S-Sethisak's picture
End of training
1284989 verified
metadata
library_name: transformers
language:
  - kh
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google
metrics:
  - wer
model-index:
  - name: Whisper-Small-kh
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Fleur
          type: google
        metrics:
          - name: Wer
            type: wer
            value: 19.510040160642568

Whisper-Small-kh

This model is a fine-tuned version of openai/whisper-small on the Fleur dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2773
  • Wer Ortho: 40.6131
  • Wer: 19.5100
  • Cer: 10.6710

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer Cer
No log 1.0 19 0.2679 40.6512 19.5904 10.7011
0.0006 2.0 38 0.2717 40.4037 19.5984 10.7388
0.0005 2.8649 54 0.2773 40.6131 19.5100 10.6710

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.8.0+cu126
  • Datasets 2.14.7
  • Tokenizers 0.22.1