CodeTrans model for code documentation generation javascript
Pretrained model on programming language javascript using the t5 base model architecture. It was first released in this repository. This model is trained on tokenized javascript code functions: it works best with tokenized javascript functions.
Model description
This CodeTrans model is based on the t5-base
model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the javascript function/method.
Intended uses & limitations
The model could be used to generate the description for the javascript function or be fine-tuned on other javascript code tasks. It can be used on unparsed and untokenized javascript code. However, if the javascript code is tokenized, the performance should be better.
How to use
Here is how to use this model to generate javascript function documentation using Transformers SummarizationPipeline:
from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
pipeline = SummarizationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_javascript_transfer_learning_finetune"),
tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_javascript_transfer_learning_finetune", skip_special_tokens=True),
device=0
)
tokenized_code = "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }"
pipeline([tokenized_code])
Run this example in colab notebook.
Training data
The supervised training tasks datasets can be downloaded on Link
Training procedure
Transfer-learning Pretraining
The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
Fine-tuning
This model was then fine-tuned on a single TPU Pod V3-8 for 35,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing javascript code.
Evaluation results
For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score):
Test results :
Language / Model | Python | Java | Go | Php | Ruby | JavaScript |
---|---|---|---|---|---|---|
CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 |
CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 |
CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 |
CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 |
CodeTrans-TF-Large | 20.35 | 20.06 | 19.54 | 26.18 | 14.94 | 18.98 |
CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 |
CodeTrans-MT-Base | 20.39 | 21.22 | 19.43 | 26.23 | 15.26 | 16.11 |
CodeTrans-MT-Large | 20.18 | 21.87 | 19.38 | 26.08 | 15.00 | 16.23 |
CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 |
CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 |
CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 |
State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 |
Created by Ahmed Elnaggar | LinkedIn and Wei Ding | LinkedIn
- Downloads last month
- 18