File size: 6,949 Bytes
464ecf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
language:
- en
license: mit
pipeline_tag: text-generation
tags:
- svector
- reasoning
---
# Spec-T1-RL-7B
A high-precision mathematical and algorithmic reasoning model
[](https://huggingface.co/SVECTOR-CORPORATION/Spec-T1-RL-7B)
## π Model Card
| Model Details | Description |
|-----------------|----------------|
| Developer | SVECTOR |
| Model Size | 7 billion parameters |
| Context Length | 32,000 tokens |
| Training Data | Reasoning-focused datasets with mathematical, logical, and code content |
| Precision | `bfloat16`, `float16` |
| License | MIT |
| Release Date | May 2025 |
## π Model Overview
`Spec-T1-RL-7B` is a specialized large language model engineered for exceptional performance in mathematical reasoning, algorithmic problem-solving, and real-world code generation. Unlike general-purpose models, Spec-T1 has been architecturally designed and trained specifically to excel in domains requiring precise, logical thinking.
The model represents a significant advancement in specialized reasoning capabilities at the 7B parameter scale, outperforming much larger models on technical benchmarks while maintaining efficient deployment requirements.
## β¨ Key Capabilities
- Mathematical Reasoning: Solves complex math problems with step-by-step logical deduction
- Algorithmic Problem-Solving: Designs and analyzes algorithms across multiple domains
- Code Generation: Produces functional, high-quality code with strong test pass rates
- Precise Instruction Following: Responds accurately to structured technical prompts
- Symbolic Verification: Uses built-in verification mechanisms for mathematics and logic
## ποΈ Model Architecture
Spec-T1-RL-7B combines several architectural innovations to achieve its specialized reasoning capabilities:
- Foundation: Advanced transformer architecture with optimized attention mechanisms
- Mixture-of-Experts (MoE): Lightweight conditional computation for efficient scaling
- Activations: SwiGLU activations for improved gradient flow in mathematical operations
- Normalization: RMSNorm for faster convergence and stability in reasoning tasks
## π οΈ Training Methodology
Our model underwent a three-phase training process designed to optimize reasoning capabilities:
### 1οΈβ£ Reasoning-Aware Pretraining
- Specialized corpus with heavy emphasis on mathematical notation, logical syntax, and code
- Curriculum learning approach prioritizing structured reasoning patterns
- Custom tokenizer optimized for mathematical and programming syntax
### 2οΈβ£ Instruction Fine-Tuning
- 400K+ multi-domain, structured prompts focused on reasoning tasks
- Combined CodeInstruct methodology with ThoughtChain prompting
- Synthetic data generation with verification feedback loops
### 3οΈβ£ Reinforcement Learning Alignment
- Reward modeling using deterministic pass/fail signals for math and code correctness
- Unit test integration for real-time verification of generated solutions
- Symbolic verification of mathematical proofs and derivations
## π Benchmark Performance
The Spec-T1-RL-7B model demonstrates exceptional performance across reasoning benchmarks, particularly in mathematics and code generation tasks:
### General Reasoning
| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
| GPQA Diamond (Pass@1) | 49.9 | 65.0 | 60.0 | 54.5 | 65.1 |
| SuperGPQA (Pass@1) | 42.4 | 48.2 | 45.2 | 43.6 |52.8 |
| DROP (3-shot F1) | 83.7 | 88.3 | 83.9 | 71.2 | 86.2 |
| MMLU-Pro (EM) | 72.6 | 78.0 | 80.3 | 52.0 | 76.4 |
| IF-Eval (Prompt Strict) | 84.3 | 86.5 | 84.8 | 40.4 | 83.3 |
### Mathematics
| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
| MATH-500 (Pass@1) | 74.6 | 78.3 | 90.0 | 90.6 | 96.1 |
| AIME 2024 (Pass@1) | 9.3 | 16.0 | 63.6 | 50.0 | 74.5 |
| AIME 2025 (Pass@1) | 11.6 | 7.4 | 50.7 | 32.4 |68.3 |
### Code Generation
| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
| LiveCodeBench v5 (Pass@1) | 32.9 | 38.9 | 53.8 | 41.9 | 60.2 |
| LiveCodeBench v6 (Pass@1) | 30.9 | 37.2 | 46.8 | 39.1 | 54.4 |
## π» Usage Examples
### Basic Usage with Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("SVECTOR-CORPORATION/Spec-T1-RL-7B")
tokenizer = AutoTokenizer.from_pretrained("SVECTOR-CORPORATION/Spec-T1-RL-7B")
# Mathematical reasoning example
prompt = """
Prove: The sum of the first n odd numbers is n^2.
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Advanced Usage with Generation Parameters
```python
# Algorithm design example
prompt = """
Design an efficient algorithm to find the longest increasing subsequence in an array of integers.
"""
# Configure generation parameters for better reasoning
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
inputs,
max_new_tokens=1024,
temperature=0.1,
top_p=0.95,
do_sample=True,
num_return_sequences=1,
repetition_penalty=1.1
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Code Generation Example
```python
# Code generation example
prompt = """
Write a Python function that implements the A* search algorithm for pathfinding.
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
inputs,
max_new_tokens=2048,
temperature=0.2,
top_p=0.9,
do_sample=True
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## π Deployment
Spec-T1-RL-7B can be deployed on consumer hardware due to its efficient architecture and parameter count:
### Minimum Requirements
- 16GB VRAM (bfloat16/float16)
- 32GB system RAM
- CUDA-compatible GPU
### Recommended Configuration
- 24GB+ VRAM for optimal performance
- 64GB+ system RAM for long-context applications
- NVIDIA A10 or better
## π Citation
If you use Spec-T1-RL-7B in your research, please cite:
```bibtex
@misc{svector2025spect1,
title={Spec-T1-RL-7B: Structured Reasoning through Reinforcement Alignment},
author={SVECTOR Team},
year={2025},
}
```
## π License
Spec-T1-RL-7B is released under the MIT License.
## π¬ Contact
For questions, feedback, or collaboration inquiries, please contact:
- Email: [email protected]
- Twitter: [@SVECTOR_](https://x.com/SVECTOR_)
- GitHub: [SVECTOR-CORPORATION](https://github.com/SVECTOR-CORPORATION) |