File size: 6,949 Bytes
464ecf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
language:
- en
license: mit
pipeline_tag: text-generation
tags:
- svector
- reasoning
---

# Spec-T1-RL-7B

 A high-precision mathematical and algorithmic reasoning model

 [![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Spec--T1--RL--7B-yellow)](https://huggingface.co/SVECTOR-CORPORATION/Spec-T1-RL-7B)
 

## πŸ“‹ Model Card

| Model Details | Description |
|-----------------|----------------|
| Developer | SVECTOR |
| Model Size | 7 billion parameters |
| Context Length | 32,000 tokens |
| Training Data | Reasoning-focused datasets with mathematical, logical, and code content |
| Precision | `bfloat16`, `float16` |
| License | MIT |
| Release Date | May 2025 |

## πŸ” Model Overview

`Spec-T1-RL-7B` is a specialized large language model engineered for exceptional performance in mathematical reasoning, algorithmic problem-solving, and real-world code generation. Unlike general-purpose models, Spec-T1 has been architecturally designed and trained specifically to excel in domains requiring precise, logical thinking.
The model represents a significant advancement in specialized reasoning capabilities at the 7B parameter scale, outperforming much larger models on technical benchmarks while maintaining efficient deployment requirements.

## ✨ Key Capabilities

- Mathematical Reasoning: Solves complex math problems with step-by-step logical deduction
- Algorithmic Problem-Solving: Designs and analyzes algorithms across multiple domains
- Code Generation: Produces functional, high-quality code with strong test pass rates
- Precise Instruction Following: Responds accurately to structured technical prompts
- Symbolic Verification: Uses built-in verification mechanisms for mathematics and logic

## πŸ—οΈ Model Architecture

Spec-T1-RL-7B combines several architectural innovations to achieve its specialized reasoning capabilities:

- Foundation: Advanced transformer architecture with optimized attention mechanisms
- Mixture-of-Experts (MoE): Lightweight conditional computation for efficient scaling
- Activations: SwiGLU activations for improved gradient flow in mathematical operations
- Normalization: RMSNorm for faster convergence and stability in reasoning tasks

## πŸ› οΈ Training Methodology

Our model underwent a three-phase training process designed to optimize reasoning capabilities:

### 1️⃣ Reasoning-Aware Pretraining
- Specialized corpus with heavy emphasis on mathematical notation, logical syntax, and code
- Curriculum learning approach prioritizing structured reasoning patterns
- Custom tokenizer optimized for mathematical and programming syntax

### 2️⃣ Instruction Fine-Tuning
- 400K+ multi-domain, structured prompts focused on reasoning tasks
- Combined CodeInstruct methodology with ThoughtChain prompting
- Synthetic data generation with verification feedback loops

### 3️⃣ Reinforcement Learning Alignment
- Reward modeling using deterministic pass/fail signals for math and code correctness
- Unit test integration for real-time verification of generated solutions
- Symbolic verification of mathematical proofs and derivations

## πŸ“Š Benchmark Performance

The Spec-T1-RL-7B model demonstrates exceptional performance across reasoning benchmarks, particularly in mathematics and code generation tasks:

### General Reasoning

| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
| GPQA Diamond (Pass@1) | 49.9 | 65.0 | 60.0 | 54.5 | 65.1 |
| SuperGPQA (Pass@1) | 42.4 | 48.2 | 45.2 | 43.6 |52.8 |
| DROP (3-shot F1) | 83.7 | 88.3 | 83.9 | 71.2 | 86.2 |
| MMLU-Pro (EM) | 72.6 | 78.0 | 80.3 | 52.0 | 76.4 |
| IF-Eval (Prompt Strict) | 84.3 | 86.5 | 84.8 | 40.4 | 83.3 |

### Mathematics

| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B |  Spec-T1 |
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
| MATH-500 (Pass@1) | 74.6 | 78.3 | 90.0 | 90.6 |  96.1 |
| AIME 2024 (Pass@1) | 9.3 | 16.0 | 63.6 | 50.0 | 74.5 |
| AIME 2025 (Pass@1) | 11.6 | 7.4 | 50.7 | 32.4 |68.3 |

### Code Generation

| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet | OpenAI o1-mini | QwQ-32B | Spec-T1 |
|-----------|:-----------:|:-----------------:|:--------------:|:-------:|:-----------:|
| LiveCodeBench v5 (Pass@1) | 32.9 | 38.9 | 53.8 | 41.9 |  60.2 |
| LiveCodeBench v6 (Pass@1) | 30.9 | 37.2 | 46.8 | 39.1 | 54.4 |

## πŸ’» Usage Examples

### Basic Usage with Transformers

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("SVECTOR-CORPORATION/Spec-T1-RL-7B")
tokenizer = AutoTokenizer.from_pretrained("SVECTOR-CORPORATION/Spec-T1-RL-7B")

# Mathematical reasoning example
prompt = """
Prove: The sum of the first n odd numbers is n^2.
"""

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

### Advanced Usage with Generation Parameters

```python
# Algorithm design example
prompt = """
Design an efficient algorithm to find the longest increasing subsequence in an array of integers.
"""

# Configure generation parameters for better reasoning
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
    inputs,
    max_new_tokens=1024,
    temperature=0.1,
    top_p=0.95,
    do_sample=True,
    num_return_sequences=1,
    repetition_penalty=1.1
)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

### Code Generation Example

```python
# Code generation example
prompt = """
Write a Python function that implements the A* search algorithm for pathfinding.
"""

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
    inputs,
    max_new_tokens=2048,
    temperature=0.2,
    top_p=0.9,
    do_sample=True
)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## πŸš€ Deployment

Spec-T1-RL-7B can be deployed on consumer hardware due to its efficient architecture and parameter count:

### Minimum Requirements
- 16GB VRAM (bfloat16/float16)
- 32GB system RAM
- CUDA-compatible GPU

### Recommended Configuration
- 24GB+ VRAM for optimal performance
- 64GB+ system RAM for long-context applications
- NVIDIA A10 or better

## πŸ“ Citation

If you use Spec-T1-RL-7B in your research, please cite:

```bibtex
@misc{svector2025spect1,
  title={Spec-T1-RL-7B: Structured Reasoning through Reinforcement Alignment},
  author={SVECTOR Team},
  year={2025},
}
```

## πŸ“„ License

Spec-T1-RL-7B is released under the MIT License.

## πŸ“¬ Contact

For questions, feedback, or collaboration inquiries, please contact:
- Email: [email protected]
- Twitter: [@SVECTOR_](https://x.com/SVECTOR_)
- GitHub: [SVECTOR-CORPORATION](https://github.com/SVECTOR-CORPORATION)