Model Card: Sai2076/LLLMA_FINETUNED_PROJEN
A LLaMA-3.2 based instruction-tuned model fine-tuned with Unsloth + QLoRA using 🤗 Transformers.
This model is part of the ProjGen project, aimed at enhancing developer productivity through automated project generation and structured code scaffolding.
Model Details
Model Description
- Base model:
meta-llama/Llama-3.2-<SIZE>-Instruct
- Finetuning method: Unsloth + QLoRA (LoRA adapters)
- Precision (train): 4-bit NF4 quantization (bitsandbytes) + bf16 compute
- Context length: 4096
- Task(s): Instruction following & project/code generation
- License: Inherits from Meta’s LLaMA-3.2 license
- Developed by: Sai Praneeth (UAB, ProjGen Project)
- Finetuned from:
meta-llama/Llama-3.2-<SIZE>-Instruct
- Shared by: Sai2076
Model Sources
- Repository: Sai2076/LLLMA_FINETUNED_PROJEN
- Project Paper: ProjGen – Enhanced Developer Productivity for Flask Project Generation with a RAG-Enhanced Fine-Tuned Local LLM
- Demo (optional): [link to demo if available]
Intended Uses & Limitations
Direct Use
- Generating Flask/Django/Streamlit project structures automatically.
- Instruction-following tasks related to software engineering and code generation.
Downstream Use
- Further fine-tuning on domain-specific datasets (e.g., medical imaging, finance, etc.).
- Integration into developer assistants and productivity tools.
Out-of-Scope / Limitations
- Not suitable for medical, legal, or financial decision-making without human review.
- May hallucinate or produce insecure/inefficient code if not monitored.
Bias, Risks, and Limitations
The model inherits risks from the base LLaMA-3.2 model:
- Possible hallucinations and factual inaccuracies.
- Dataset/domain biases reflected in responses.
- Outputs should be validated before production deployment.
Recommendation: Always pair outputs with testing, validation, and human oversight.
Getting Started
Inference (PEFT adapter form)
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
model_id = "Sai2076/LLLMA_FINETUNED_PROJEN"
tok = AutoTokenizer.from_pretrained(model_id)
bnb = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb,
device_map="auto",
torch_dtype="auto"
)
prompt = "Generate a Flask project with login, dashboard, and reports."
inputs = tok(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
print(tok.decode(outputs[0], skip_special_tokens=True))
Training Details
Data
- Dataset: Custom ProjGen dataset built from structured Flask/Django/Streamlit projects and instructions.
- Size: [Fill in #samples / tokens]
- Preprocessing: Chat-style instruction formatting (system/user/assistant), deduplication, truncation at 4096 tokens.
Training Procedure
- Quantization: 4-bit NF4 + double quantization (bitsandbytes)
- LoRA Config:
r
: 16alpha
: 32dropout
: 0.05- Target modules: q_proj, k_proj, v_proj, o_proj, gate_up_proj, down_proj
- Optimizer: Paged AdamW (32-bit)
- LR / Schedule: 2e-4 with cosine decay + warmup
- Batch size: [fill in effective batch size]
- Epochs/Steps: [fill in from ipynb]
- Precision: bf16 mixed precision
- Grad checkpointing: Enabled
- Flash attention: Enabled (Unsloth optimization)
Training Hardware
- GPU: RTX 4070 (12GB VRAM) [replace with actual if different]
- Training time: [fill in hours]
- Checkpoint size: ~ (adapter size: ~200MB; merged model size depends on base LLaMA size)
Evaluation
Data & Metrics
- Validation set: Held-out portion of ProjGen dataset
- Metrics:
- Instruction Following: Exact Match, ROUGE-L
- Code Generation: Pass@k (via unit test evaluation)
Results
Metric | Value | Notes |
---|---|---|
Validation Loss | ___ | From training logs |
Exact Match / F1 | ___ | |
ROUGE-L / BLEU | ___ | |
Pass@1 | ___ |
Environmental Impact (estimate)
- Hardware: RTX 4070 (12GB VRAM) [replace with actual]
- Hours: [fill in H]
- Region/Provider: [cloud/on-prem]
- Estimated CO₂e: Use ML CO₂ Impact
Citation
If you use this model, please cite the base model and this project:
BibTeX (base, example):
@article{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Touvron, Hugo and others},
journal={arXiv preprint arXiv:XXXX.XXXXX},
year={2023}
}
Your work (fill in):
@misc{projgen2025,
title = {ProjGen: Enhanced Developer Productivity for Flask Project Generation with a RAG-Enhanced Fine-Tuned Local LLM},
author = {Sai Praneeth, Renduchinthala},
year = {2025},
howpublished = {\url{https://huggingface.co/Sai2076/LLLMA_FINETUNED_PROJEN}}
}
Contact
- Author: Sai Praneeth Kumar (UAB)
- HF Profile: Sai2076
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support