whisper-small-hi-cv
This model is a fine-tuned version of openai/whisper-small on the Common Voice 15 dataset. It achieves the following results on the evaluation set:
- Wer: 14.0178
- Cer: 05.8824
Evaluation
from datasets import load_dataset,load_metric,Audio
from transformers import WhisperForConditionalGeneration, WhisperProcessor
import torch
import torchaudio
test_dataset = load_dataset("mozilla-foundation/common_voice_13_0", "hi", split="test")
wer = load_metric("wer")
cer = load_metric("cer")
processor = WhisperProcessor.from_pretrained("SakshiRathi77/whisper-hindi-kagglex")
model = WhisperForConditionalGeneration.from_pretrained("SakshiRathi77/whisper-hindi-kagglex").to("cuda")
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16000))
def map_to_pred(batch):
audio = batch["audio"]
input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
batch["reference"] = processor.tokenizer._normalize(batch['sentence'])
with torch.no_grad():
predicted_ids = model.generate(input_features.to("cuda"))[0]
transcription = processor.decode(predicted_ids)
batch["prediction"] = processor.tokenizer._normalize(transcription)
return batch
result = test_dataset.map(map_to_pred)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["prediction"], references=result["reference"])))
print("CER: {:2f}".format(100 * cer.compute(predictions=result["prediction"], references=result["reference"])))
WER: 23.1361
CER: 10.4366
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for SakshiRathi77/whisper-hindi-kagglex
Base model
openai/whisper-smallDatasets used to train SakshiRathi77/whisper-hindi-kagglex
Evaluation results
- Test WER on Common Voice 15self-reported13.991
- Test CER on Common Voice 15self-reported5.884
- Test WER on Common Voice 13self-reported23.136
- Test CER on Common Voice 13self-reported10.437