Improve model card: add arXiv ID, H1 title, and update paper links (#4)
Browse files- Improve model card: add arXiv ID, H1 title, and update paper links (e2b375f5ff3bb6b6244e07ba4d14cbdfd9dbc3e3)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,29 +1,32 @@
|
|
| 1 |
---
|
| 2 |
-
license: cc-by-nc-4.0
|
| 3 |
language:
|
| 4 |
- en
|
|
|
|
|
|
|
| 5 |
pipeline_tag: text-generation
|
| 6 |
tags:
|
| 7 |
- text diffusion model
|
| 8 |
- language model
|
| 9 |
- code generation
|
| 10 |
-
|
| 11 |
---
|
| 12 |
|
|
|
|
|
|
|
| 13 |
<p align="center">
|
| 14 |
<img alt="coda-logo" src="https://raw.githubusercontent.com/weirayao/CoDA/main/CoDA-logo.png">
|
| 15 |
</p>
|
| 16 |
|
| 17 |
<p align="center">
|
| 18 |
<a href="https://github.com/SalesforceAIResearch/CoDA"><strong>Try CoDA</strong></a> ·
|
| 19 |
-
<a href="https://
|
| 20 |
<a href="https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340"><strong>Model Collection</strong></a> ·
|
| 21 |
<a href="https://github.com/SalesforceAIResearch/CoDA/blob/main/README.md"><strong>GitHub Repository</strong></a>
|
| 22 |
</p>
|
| 23 |
|
| 24 |
<br>
|
| 25 |
|
| 26 |
-
Welcome to CoDA, Salesforce AI Research's diffusion-based language model designed for powerful code generation and bidirectional context understanding.
|
| 27 |
|
| 28 |
We're releasing CoDA as a lightweight yet capable model:
|
| 29 |
- `CoDA-1.7B-Instruct` — optimized for code generation tasks with bidirectional diffusion modeling (1.7B parameters)
|
|
@@ -34,29 +37,29 @@ CoDA leverages discrete diffusion processes to enable understanding of both past
|
|
| 34 |
> [!NOTE]
|
| 35 |
> This model card is dedicated to the `CoDA-1.7B-Instruct` model. Check out our [model collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340) for other variants.
|
| 36 |
|
| 37 |
-
#
|
| 38 |
|
| 39 |
-
*
|
| 40 |
-
*
|
| 41 |
-
*
|
| 42 |
-
*
|
| 43 |
-
*
|
| 44 |
|
| 45 |
---
|
| 46 |
|
| 47 |
## 📊 Model Details
|
| 48 |
|
| 49 |
-
-
|
| 50 |
-
-
|
| 51 |
-
-
|
| 52 |
-
-
|
| 53 |
|
| 54 |
## ✨ Key Features
|
| 55 |
|
| 56 |
-
-
|
| 57 |
-
-
|
| 58 |
-
-
|
| 59 |
-
-
|
| 60 |
|
| 61 |
## 📈 Performance
|
| 62 |
|
|
@@ -191,8 +194,6 @@ bash eval_mbpp_humaneval.sh
|
|
| 191 |
```
|
| 192 |
## 📚 Citation
|
| 193 |
|
| 194 |
-
Technical report coming soon. For now, please cite:
|
| 195 |
-
|
| 196 |
```bibtex
|
| 197 |
@misc{coda2025,
|
| 198 |
title={CoDA: Coding LM via Diffusion Adaptation},
|
|
@@ -204,7 +205,7 @@ Technical report coming soon. For now, please cite:
|
|
| 204 |
|
| 205 |
## 🔗 Resources
|
| 206 |
|
| 207 |
-
- 📄 **
|
| 208 |
- 💻 **Code Repository**: [github.com/SalesforceAIResearch/CoDA](https://github.com/SalesforceAIResearch/CoDA)
|
| 209 |
- 🤗 **Model Hub**: [Salesforce CoDA collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340)
|
| 210 |
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
+
library_name: transformers
|
| 5 |
+
license: cc-by-nc-4.0
|
| 6 |
pipeline_tag: text-generation
|
| 7 |
tags:
|
| 8 |
- text diffusion model
|
| 9 |
- language model
|
| 10 |
- code generation
|
| 11 |
+
arxiv: 2510.03270
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# CoDA: Coding LM via Diffusion Adaptation
|
| 15 |
+
|
| 16 |
<p align="center">
|
| 17 |
<img alt="coda-logo" src="https://raw.githubusercontent.com/weirayao/CoDA/main/CoDA-logo.png">
|
| 18 |
</p>
|
| 19 |
|
| 20 |
<p align="center">
|
| 21 |
<a href="https://github.com/SalesforceAIResearch/CoDA"><strong>Try CoDA</strong></a> ·
|
| 22 |
+
<a href="https://huggingface.co/papers/2510.03270"><strong>Paper</strong></a> ·
|
| 23 |
<a href="https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340"><strong>Model Collection</strong></a> ·
|
| 24 |
<a href="https://github.com/SalesforceAIResearch/CoDA/blob/main/README.md"><strong>GitHub Repository</strong></a>
|
| 25 |
</p>
|
| 26 |
|
| 27 |
<br>
|
| 28 |
|
| 29 |
+
Welcome to CoDA, Salesforce AI Research's diffusion-based language model designed for powerful code generation and bidirectional context understanding, presented in the paper [CoDA: Coding LM via Diffusion Adaptation](https://huggingface.co/papers/2510.03270).
|
| 30 |
|
| 31 |
We're releasing CoDA as a lightweight yet capable model:
|
| 32 |
- `CoDA-1.7B-Instruct` — optimized for code generation tasks with bidirectional diffusion modeling (1.7B parameters)
|
|
|
|
| 37 |
> [!NOTE]
|
| 38 |
> This model card is dedicated to the `CoDA-1.7B-Instruct` model. Check out our [model collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340) for other variants.
|
| 39 |
|
| 40 |
+
# ⭐ Highlights
|
| 41 |
|
| 42 |
+
* **Bidirectional Context Understanding:** Leverage discrete diffusion processes to understand both past and future tokens, enabling superior code completion.
|
| 43 |
+
* **Confidence-Guided Sampling:** Maintain competitive inference latency through intelligent sampling strategies that balance quality and speed.
|
| 44 |
+
* **Lightweight Architecture:** Achieve strong performance with only 1.7B parameters, making it accessible for researchers with limited computational resources.
|
| 45 |
+
* **Full Training Pipeline:** Complete reproducible training pipeline from pre-training to fine-tuning, enabling customization for specific domains.
|
| 46 |
+
* **Optimized for Code:** Specifically designed and trained for code generation tasks, with strong performance on HumanEval, MBPP, and other coding benchmarks.
|
| 47 |
|
| 48 |
---
|
| 49 |
|
| 50 |
## 📊 Model Details
|
| 51 |
|
| 52 |
+
- **Model Size**: 1.7B parameters
|
| 53 |
+
- **Architecture**: Diffusion-based language model
|
| 54 |
+
- **Training**: TPU-based pre-training with GPU fine-tuning
|
| 55 |
+
- **Primary Use**: Code generation and completion tasks
|
| 56 |
|
| 57 |
## ✨ Key Features
|
| 58 |
|
| 59 |
+
- **Bidirectional Context**: Diffusion modeling enables understanding of both past and future tokens
|
| 60 |
+
- **Confidence-Guided Sampling**: Maintains competitive inference latency through intelligent sampling
|
| 61 |
+
- **Lightweight Design**: Achieves strong performance with fewer parameters than comparable models
|
| 62 |
+
- **Open Training Pipeline**: Fully reproducible training from pre-training to fine-tuning
|
| 63 |
|
| 64 |
## 📈 Performance
|
| 65 |
|
|
|
|
| 194 |
```
|
| 195 |
## 📚 Citation
|
| 196 |
|
|
|
|
|
|
|
| 197 |
```bibtex
|
| 198 |
@misc{coda2025,
|
| 199 |
title={CoDA: Coding LM via Diffusion Adaptation},
|
|
|
|
| 205 |
|
| 206 |
## 🔗 Resources
|
| 207 |
|
| 208 |
+
- 📄 **Paper**: [huggingface.co/papers/2510.03270](https://huggingface.co/papers/2510.03270)
|
| 209 |
- 💻 **Code Repository**: [github.com/SalesforceAIResearch/CoDA](https://github.com/SalesforceAIResearch/CoDA)
|
| 210 |
- 🤗 **Model Hub**: [Salesforce CoDA collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340)
|
| 211 |
|