hlnchen nielsr HF Staff commited on
Commit
f2d40ce
·
verified ·
1 Parent(s): 89d646a

Improve model card: add arXiv ID, H1 title, and update paper links (#4)

Browse files

- Improve model card: add arXiv ID, H1 title, and update paper links (e2b375f5ff3bb6b6244e07ba4d14cbdfd9dbc3e3)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +22 -21
README.md CHANGED
@@ -1,29 +1,32 @@
1
  ---
2
- license: cc-by-nc-4.0
3
  language:
4
  - en
 
 
5
  pipeline_tag: text-generation
6
  tags:
7
  - text diffusion model
8
  - language model
9
  - code generation
10
- library_name: transformers
11
  ---
12
 
 
 
13
  <p align="center">
14
  <img alt="coda-logo" src="https://raw.githubusercontent.com/weirayao/CoDA/main/CoDA-logo.png">
15
  </p>
16
 
17
  <p align="center">
18
  <a href="https://github.com/SalesforceAIResearch/CoDA"><strong>Try CoDA</strong></a> ·
19
- <a href="https://github.com/SalesforceAIResearch/CoDA/blob/main/technical_report.pdf"><strong>Technical Report</strong></a> ·
20
  <a href="https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340"><strong>Model Collection</strong></a> ·
21
  <a href="https://github.com/SalesforceAIResearch/CoDA/blob/main/README.md"><strong>GitHub Repository</strong></a>
22
  </p>
23
 
24
  <br>
25
 
26
- Welcome to CoDA, Salesforce AI Research's diffusion-based language model designed for powerful code generation and bidirectional context understanding.
27
 
28
  We're releasing CoDA as a lightweight yet capable model:
29
  - `CoDA-1.7B-Instruct` — optimized for code generation tasks with bidirectional diffusion modeling (1.7B parameters)
@@ -34,29 +37,29 @@ CoDA leverages discrete diffusion processes to enable understanding of both past
34
  > [!NOTE]
35
  > This model card is dedicated to the `CoDA-1.7B-Instruct` model. Check out our [model collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340) for other variants.
36
 
37
- # ⭐️ Highlights
38
 
39
- * **Bidirectional Context Understanding:** Leverage discrete diffusion processes to understand both past and future tokens, enabling superior code completion.
40
- * **Confidence-Guided Sampling:** Maintain competitive inference latency through intelligent sampling strategies that balance quality and speed.
41
- * **Lightweight Architecture:** Achieve strong performance with only 1.7B parameters, making it accessible for researchers with limited computational resources.
42
- * **Full Training Pipeline:** Complete reproducible training pipeline from pre-training to fine-tuning, enabling customization for specific domains.
43
- * **Optimized for Code:** Specifically designed and trained for code generation tasks, with strong performance on HumanEval, MBPP, and other coding benchmarks.
44
 
45
  ---
46
 
47
  ## 📊 Model Details
48
 
49
- - **Model Size**: 1.7B parameters
50
- - **Architecture**: Diffusion-based language model
51
- - **Training**: TPU-based pre-training with GPU fine-tuning
52
- - **Primary Use**: Code generation and completion tasks
53
 
54
  ## ✨ Key Features
55
 
56
- - **Bidirectional Context**: Diffusion modeling enables understanding of both past and future tokens
57
- - **Confidence-Guided Sampling**: Maintains competitive inference latency through intelligent sampling
58
- - **Lightweight Design**: Achieves strong performance with fewer parameters than comparable models
59
- - **Open Training Pipeline**: Fully reproducible training from pre-training to fine-tuning
60
 
61
  ## 📈 Performance
62
 
@@ -191,8 +194,6 @@ bash eval_mbpp_humaneval.sh
191
  ```
192
  ## 📚 Citation
193
 
194
- Technical report coming soon. For now, please cite:
195
-
196
  ```bibtex
197
  @misc{coda2025,
198
  title={CoDA: Coding LM via Diffusion Adaptation},
@@ -204,7 +205,7 @@ Technical report coming soon. For now, please cite:
204
 
205
  ## 🔗 Resources
206
 
207
- - 📄 **Technical Report**: [technical_report.pdf](https://github.com/SalesforceAIResearch/CoDA/blob/main/technical_report.pdf)
208
  - 💻 **Code Repository**: [github.com/SalesforceAIResearch/CoDA](https://github.com/SalesforceAIResearch/CoDA)
209
  - 🤗 **Model Hub**: [Salesforce CoDA collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340)
210
 
 
1
  ---
 
2
  language:
3
  - en
4
+ library_name: transformers
5
+ license: cc-by-nc-4.0
6
  pipeline_tag: text-generation
7
  tags:
8
  - text diffusion model
9
  - language model
10
  - code generation
11
+ arxiv: 2510.03270
12
  ---
13
 
14
+ # CoDA: Coding LM via Diffusion Adaptation
15
+
16
  <p align="center">
17
  <img alt="coda-logo" src="https://raw.githubusercontent.com/weirayao/CoDA/main/CoDA-logo.png">
18
  </p>
19
 
20
  <p align="center">
21
  <a href="https://github.com/SalesforceAIResearch/CoDA"><strong>Try CoDA</strong></a> ·
22
+ <a href="https://huggingface.co/papers/2510.03270"><strong>Paper</strong></a> ·
23
  <a href="https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340"><strong>Model Collection</strong></a> ·
24
  <a href="https://github.com/SalesforceAIResearch/CoDA/blob/main/README.md"><strong>GitHub Repository</strong></a>
25
  </p>
26
 
27
  <br>
28
 
29
+ Welcome to CoDA, Salesforce AI Research's diffusion-based language model designed for powerful code generation and bidirectional context understanding, presented in the paper [CoDA: Coding LM via Diffusion Adaptation](https://huggingface.co/papers/2510.03270).
30
 
31
  We're releasing CoDA as a lightweight yet capable model:
32
  - `CoDA-1.7B-Instruct` — optimized for code generation tasks with bidirectional diffusion modeling (1.7B parameters)
 
37
  > [!NOTE]
38
  > This model card is dedicated to the `CoDA-1.7B-Instruct` model. Check out our [model collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340) for other variants.
39
 
40
+ # Highlights
41
 
42
+ * **Bidirectional Context Understanding:** Leverage discrete diffusion processes to understand both past and future tokens, enabling superior code completion.
43
+ * **Confidence-Guided Sampling:** Maintain competitive inference latency through intelligent sampling strategies that balance quality and speed.
44
+ * **Lightweight Architecture:** Achieve strong performance with only 1.7B parameters, making it accessible for researchers with limited computational resources.
45
+ * **Full Training Pipeline:** Complete reproducible training pipeline from pre-training to fine-tuning, enabling customization for specific domains.
46
+ * **Optimized for Code:** Specifically designed and trained for code generation tasks, with strong performance on HumanEval, MBPP, and other coding benchmarks.
47
 
48
  ---
49
 
50
  ## 📊 Model Details
51
 
52
+ - **Model Size**: 1.7B parameters
53
+ - **Architecture**: Diffusion-based language model
54
+ - **Training**: TPU-based pre-training with GPU fine-tuning
55
+ - **Primary Use**: Code generation and completion tasks
56
 
57
  ## ✨ Key Features
58
 
59
+ - **Bidirectional Context**: Diffusion modeling enables understanding of both past and future tokens
60
+ - **Confidence-Guided Sampling**: Maintains competitive inference latency through intelligent sampling
61
+ - **Lightweight Design**: Achieves strong performance with fewer parameters than comparable models
62
+ - **Open Training Pipeline**: Fully reproducible training from pre-training to fine-tuning
63
 
64
  ## 📈 Performance
65
 
 
194
  ```
195
  ## 📚 Citation
196
 
 
 
197
  ```bibtex
198
  @misc{coda2025,
199
  title={CoDA: Coding LM via Diffusion Adaptation},
 
205
 
206
  ## 🔗 Resources
207
 
208
+ - 📄 **Paper**: [huggingface.co/papers/2510.03270](https://huggingface.co/papers/2510.03270)
209
  - 💻 **Code Repository**: [github.com/SalesforceAIResearch/CoDA](https://github.com/SalesforceAIResearch/CoDA)
210
  - 🤗 **Model Hub**: [Salesforce CoDA collection](https://huggingface.co/collections/Salesforce/coda-68d627d87921c0e28a69e340)
211