|
--- |
|
language: en |
|
license: apache-2.0 |
|
library_name: peft |
|
pipeline_tag: text-generation |
|
tags: |
|
- llama |
|
- construction |
|
- building-regulations |
|
- lora |
|
|
|
- custom construction industry dataset |
|
--- |
|
|
|
# LLAMA3.1-8B-Construction |
|
|
|
This is a fine-tuned version of LLAMA3.1-8B optimized for construction industry and building regulations knowledge. |
|
|
|
## Model Details |
|
|
|
- **Base Model:** meta-llama/Llama-3.1-8B |
|
- **Fine-tuning Method:** LoRA (Low-Rank Adaptation) |
|
- **Training Data:** Custom dataset focusing on construction industry standards, building regulations, and safety requirements |
|
- **Usage:** This model is designed to answer questions about building codes, construction best practices, and regulatory compliance |
|
|
|
## Example Usage |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
from peft import PeftModel, PeftConfig |
|
import torch |
|
|
|
# Load the adapter configuration |
|
config = PeftConfig.from_pretrained("SamuelJaja/llama-3.1-8b-construction") |
|
|
|
# Load base model with quantization |
|
bnb_config = BitsAndBytesConfig(load_in_8bit=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
quantization_config=bnb_config, |
|
device_map="auto" |
|
) |
|
|
|
# Load LoRA adapter |
|
model = PeftModel.from_pretrained(model, "SamuelJaja/llama-3.1-8b-construction") |
|
|
|
# Load tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
# Generate text |
|
prompt = "[INST] What are the main requirements for fire safety in commercial buildings? [/INST]" |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
outputs = model.generate( |
|
input_ids=inputs.input_ids, |
|
attention_mask=inputs.attention_mask, |
|
max_new_tokens=512, |
|
temperature=0.7, |
|
top_p=0.9, |
|
do_sample=True |
|
) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|