SamuelJaja's picture
Update README.md
8ac8b8f verified
---
language: en
license: apache-2.0
library_name: peft
pipeline_tag: text-generation
tags:
- llama
- construction
- building-regulations
- lora
- custom construction industry dataset
---
# LLAMA3.1-8B-Construction
This is a fine-tuned version of LLAMA3.1-8B optimized for construction industry and building regulations knowledge.
## Model Details
- **Base Model:** meta-llama/Llama-3.1-8B
- **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
- **Training Data:** Custom dataset focusing on construction industry standards, building regulations, and safety requirements
- **Usage:** This model is designed to answer questions about building codes, construction best practices, and regulatory compliance
## Example Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel, PeftConfig
import torch
# Load the adapter configuration
config = PeftConfig.from_pretrained("SamuelJaja/llama-3.1-8b-construction")
# Load base model with quantization
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
quantization_config=bnb_config,
device_map="auto"
)
# Load LoRA adapter
model = PeftModel.from_pretrained(model, "SamuelJaja/llama-3.1-8b-construction")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
# Generate text
prompt = "[INST] What are the main requirements for fire safety in commercial buildings? [/INST]"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```