metadata
			license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: resnet-50-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9624402458456636
resnet-50-finetuned-eurosat
This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1446
 - Accuracy: 0.9624
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
 - train_batch_size: 32
 - eval_batch_size: 32
 - seed: 42
 - gradient_accumulation_steps: 4
 - total_train_batch_size: 128
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_ratio: 0.1
 - num_epochs: 5
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 
|---|---|---|---|---|
| 1.9386 | 1.0 | 549 | 1.5218 | 0.7653 | 
| 0.5662 | 2.0 | 1098 | 0.3325 | 0.9288 | 
| 0.4104 | 3.0 | 1647 | 0.1853 | 0.9561 | 
| 0.3551 | 4.0 | 2197 | 0.1494 | 0.9623 | 
| 0.3174 | 5.0 | 2745 | 0.1446 | 0.9624 | 
Framework versions
- Transformers 4.28.1
 - Pytorch 2.0.0+cu118
 - Datasets 2.12.0
 - Tokenizers 0.13.3