icon.png

Sapnous-6B: A Vision-Language Model for Enhanced World Perception

Sapnous-6B is a state-of-the-art vision-language model designed to enhance perception and understanding of the world through advanced multimodal capabilities. This model builds upon the success of previous vision-language architectures while introducing novel improvements in performance and efficiency.

Model Architecture

  • Base Architecture: 6B parameters
  • Hidden Size: 4096
  • Attention Heads: 32
  • Key/Value Heads: 8
  • Hidden Layers: 28
  • Window Size: 32768
  • Vision Encoder:
    • Depth: 32 layers
    • Hidden Size: 1280
    • Attention Heads: 16
    • Patch Size: 14x14
    • Window Size: 112

Scores


πŸ“Š Benchmark Results

Multimodal Benchmarks

Benchmark InternVL2.5-8B MiniCPM-o 2.6 GPT-4o-mini Qwen2-VL-7B Qwen2.5-VL-7B Sapnous-MoE (Updated) Sapnous-6B
MMMU_val 56 50.4 60 54.1 58.6 64.4 60.2
MMMU-Pro_val 34.3 - 37.6 30.5 41.0 44.9 40.7
DocVQA_test 93 93 - 94.5 95.7 97.8 95.6
InfoVQA_test 77.6 - - 76.5 82.6 88.7 81.9
ChartQA_test 84.8 - - 83.0 87.3 94.2 87.2
TextVQA_val 79.1 80.1 - 84.3 84.9 91.2 84.6
OCRBench 822 852 785 845 864 929.0 861
CC_OCR 57.7 - - 61.6 77.8 83.7 77.3
MMStar 62.8 - - 60.7 63.9 69.3 63.6
MMBench-V1.1-En_test 79.4 78.0 76.0 80.7 82.6 89.6 82.4
MMT-Bench_test - - - 63.7 63.6 69.0 63.3
MMStar 61.5 57.5 54.8 60.7 63.9 69.2 63.6
MMVet_GPT-4-Turbo 54.2 60.0 66.9 62.0 67.1 73.3 67.2
HallBench_avg 45.2 48.1 46.1 50.6 52.9 58.0 52.5
MathVista_testmini 58.3 60.6 52.4 58.2 68.2 74.0 67.9
MathVision - - - 16.3 25.07 27.7 24.8

Reasoning & Visual Understanding Benchmarks

Benchmark # Shots Metric Llama 3.2 11B Llama 3.2 90B Sapnous-MoE (Updated) Sapnous-6B
VQAv2 (val) 0 Accuracy 66.8 73.6 80.3 74.1
Text VQA (val) 0 Relaxed accuracy 73.1 73.5 81.1 74.7
DocVQA (val, unseen) 0 ANLS 62.3 70.7 77.2 71.0
MMMU (val, 0-shot) 0 Micro average accuracy 41.7 49.3 55.4 49.2
ChartQA (test) 0 Accuracy 39.4 54.2 61.0 54.1
InfographicsQA (val, unseen) 0 ANLS 43.2 56.8 63.7 57.1
AI2 Diagram (test) 0 Accuracy 62.4 75.3 82.3 75.6
MMMU (val, CoT) 0 Micro average accuracy 50.7 60.3 66.5 60.6
MMMU-Pro, Standard (10 opts, test) 0 Accuracy 33.0 45.2 50.0 45.5
MMMU-Pro, Vision (test) 0 Accuracy 23.7 33.8 39.6 33.9
MathVista (testmini) 0 Accuracy 51.5 57.3 63.0 57.5
ChartQA (test, CoT) 0 Relaxed accuracy 83.4 85.5 93.3 86.0
AI2 Diagram (test) 0 Accuracy 91.1 92.3 100.9 93.5
DocVQA (test) 0 ANLS 88.4 90.1 98.9 91.3
VQAv2 (test) 0 Accuracy 75.2 78.1 86.0 79.0
MMLU (CoT) 0 Macro_avg/acc 73.0 86.0 94.3 87.0
MATH (CoT) 0 Final_em 51.9 68.0 75.2 68.5
GPQA 0 Accuracy 32.8 46.7 52.2 46.7
MGSM (CoT) 0 em 68.9 86.9 95.0 87.4

The model is distributed across 5 safetensors files for efficient loading and memory management. Each file contains specific layers and weights as documented in the model.safetensors.index.json.

Usage

from transformers import pipeline
import requests
from PIL import Image
from io import BytesIO

def process_image_from_url(image_url, text_prompt):
    """Processes an image from a URL using a Transformers pipeline."""
    try:
        # Fetch the image from the URL
        response = requests.get(image_url, stream=True)
        response.raise_for_status()  # Raise an exception for bad status codes (4xx or 5xx)

        # Open the image using PIL
        image = Image.open(BytesIO(response.content))

        # Create the input for the pipeline
        inputs = {"image": image, "text": text_prompt}

        # Initialize the pipeline
        pipe = pipeline("image-text-to-text", model="Sapnous-AI/Sapnous-VR-6B", trust_remote_code=True)

        # Process the image and text
        result = pipe(inputs)
        return result

    except requests.exceptions.RequestException as e:
        print(f"Error fetching image: {e}")
        return None
    except Exception as e:
        print(f"An error occurred: {e}")
        return None

# Example usage
image_url = "example.com" #replace with your image url.
text_prompt = "What is in this image?"

result = process_image_from_url(image_url, text_prompt)

if result:
    print(result)

Model Capabilities

  • Multi-modal understanding and generation
  • Enhanced visual perception with advanced vision encoder
  • Efficient processing of long sequences
  • Robust performance across various vision-language tasks

Citations

@misc{sapnous-6b,
    title = {Sapnous-6B},
    author = {Sapnous AI Team},
    year = {2025}
}

@article{Sapnous6B,
    title={Sapnous-6B: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
    author={Sapnous AI Team},
    year={2025}
}

@article{Sapnous-VR,
    title={Sapnous-VR: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond},
    author={Sapnous AI Team},
    year={2025}
}

License

Please refer to the LICENSE file for terms of use and distribution.

Downloads last month
76
Safetensors
Model size
6.76B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ 1 Ask for provider support

Collection including Sapnous-AI/Sapnous-VR-6B