segformer-finetuned-tt-2k-b1

This model is a fine-tuned version of nvidia/mit-b1 on the Saumya-Mundra/text255 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0912
  • Mean Iou: 0.4902
  • Mean Accuracy: 0.9805
  • Overall Accuracy: 0.9805
  • Accuracy Text: nan
  • Accuracy No Text: 0.9805
  • Iou Text: 0.0
  • Iou No Text: 0.9805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: polynomial
  • training_steps: 5000

Training results

Training Loss Epoch Step Accuracy No Text Accuracy Text Iou No Text Iou Text Validation Loss Mean Accuracy Mean Iou Overall Accuracy
0.3305 1.0 125 0.9586 nan 0.9586 0.0 0.1846 0.9586 0.4793 0.9586
0.2037 2.0 250 0.9706 nan 0.9706 0.0 0.1322 0.9706 0.4853 0.9706
0.1534 3.0 375 0.9784 nan 0.9784 0.0 0.1074 0.9784 0.4892 0.9784
0.1313 4.0 500 0.9839 nan 0.9839 0.0 0.0976 0.9839 0.4920 0.9839
0.1156 5.0 625 0.9799 nan 0.9799 0.0 0.1001 0.9799 0.4900 0.9799
0.1123 6.0 750 0.9866 nan 0.9866 0.0 0.0920 0.9866 0.4933 0.9866
0.108 7.0 875 0.9815 nan 0.9815 0.0 0.0946 0.9815 0.4908 0.9815
0.1017 8.0 1000 0.9805 nan 0.9805 0.0 0.0943 0.9805 0.4903 0.9805
0.0994 9.0 1125 0.9808 nan 0.9808 0.0 0.0927 0.9808 0.4904 0.9808
0.0926 10.0 1250 0.9783 nan 0.9783 0.0 0.0957 0.9783 0.4891 0.9783
0.0907 11.0 1375 0.9830 nan 0.9830 0.0 0.0913 0.9830 0.4915 0.9830
0.0893 12.0 1500 0.9838 nan 0.9838 0.0 0.0893 0.9838 0.4919 0.9838
0.0853 13.0 1625 0.9804 nan 0.9804 0.0 0.0913 0.9804 0.4902 0.9804
0.0834 14.0 1750 0.9820 nan 0.9820 0.0 0.0899 0.9820 0.4910 0.9820
0.0861 15.0 1875 0.9815 nan 0.9815 0.0 0.0902 0.9815 0.4907 0.9815
0.0803 16.0 2000 0.9793 nan 0.9793 0.0 0.0929 0.9793 0.4897 0.9793
0.0884 17.0 2125 0.1001 0.4875 0.9751 0.9751 nan 0.9751 0.0 0.9751
0.0871 18.0 2250 0.0907 0.4892 0.9783 0.9783 nan 0.9783 0.0 0.9783
0.0854 19.0 2375 0.0893 0.4924 0.9849 0.9849 nan 0.9849 0.0 0.9849
0.0852 20.0 2500 0.0870 0.4915 0.9831 0.9831 nan 0.9831 0.0 0.9831
0.0858 21.0 2625 0.0925 0.4896 0.9792 0.9792 nan 0.9792 0.0 0.9792
0.0804 22.0 2750 0.0964 0.4887 0.9774 0.9774 nan 0.9774 0.0 0.9774
0.076 23.0 2875 0.0934 0.4893 0.9786 0.9786 nan 0.9786 0.0 0.9786
0.0753 24.0 3000 0.0906 0.4890 0.9781 0.9781 nan 0.9781 0.0 0.9781
0.0742 25.0 3125 0.0962 0.4900 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.0724 26.0 3250 0.0892 0.4920 0.9840 0.9840 nan 0.9840 0.0 0.9840
0.0794 27.0 3375 0.0885 0.4902 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.0685 28.0 3500 0.0932 0.4911 0.9821 0.9821 nan 0.9821 0.0 0.9821
0.0695 29.0 3625 0.0890 0.4906 0.9812 0.9812 nan 0.9812 0.0 0.9812
0.065 30.0 3750 0.0877 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0699 31.0 3875 0.0947 0.4877 0.9754 0.9754 nan 0.9754 0.0 0.9754
0.0742 32.0 4000 0.0875 0.4902 0.9805 0.9805 nan 0.9805 0.0 0.9805
0.0646 33.0 4125 0.0895 0.4903 0.9805 0.9805 nan 0.9805 0.0 0.9805
0.0677 34.0 4250 0.0915 0.4909 0.9818 0.9818 nan 0.9818 0.0 0.9818
0.0666 35.0 4375 0.0932 0.4890 0.9781 0.9781 nan 0.9781 0.0 0.9781
0.062 36.0 4500 0.0893 0.4901 0.9803 0.9803 nan 0.9803 0.0 0.9803
0.0623 37.0 4625 0.0934 0.4895 0.9789 0.9789 nan 0.9789 0.0 0.9789
0.0658 38.0 4750 0.0907 0.4913 0.9826 0.9826 nan 0.9826 0.0 0.9826
0.0596 39.0 4875 0.0904 0.4915 0.9831 0.9831 nan 0.9831 0.0 0.9831
0.0628 40.0 5000 0.0912 0.4902 0.9805 0.9805 nan 0.9805 0.0 0.9805

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
16
Safetensors
Model size
13.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Saumya-Mundra/segformer-finetuned-tt-2k-b1

Base model

nvidia/mit-b1
Finetuned
(17)
this model