segformer-finetuned-tt-2k-b1
This model is a fine-tuned version of nvidia/mit-b1 on the Saumya-Mundra/text255 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0912
- Mean Iou: 0.4902
- Mean Accuracy: 0.9805
- Overall Accuracy: 0.9805
- Accuracy Text: nan
- Accuracy No Text: 0.9805
- Iou Text: 0.0
- Iou No Text: 0.9805
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: polynomial
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Accuracy No Text | Accuracy Text | Iou No Text | Iou Text | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
0.3305 | 1.0 | 125 | 0.9586 | nan | 0.9586 | 0.0 | 0.1846 | 0.9586 | 0.4793 | 0.9586 |
0.2037 | 2.0 | 250 | 0.9706 | nan | 0.9706 | 0.0 | 0.1322 | 0.9706 | 0.4853 | 0.9706 |
0.1534 | 3.0 | 375 | 0.9784 | nan | 0.9784 | 0.0 | 0.1074 | 0.9784 | 0.4892 | 0.9784 |
0.1313 | 4.0 | 500 | 0.9839 | nan | 0.9839 | 0.0 | 0.0976 | 0.9839 | 0.4920 | 0.9839 |
0.1156 | 5.0 | 625 | 0.9799 | nan | 0.9799 | 0.0 | 0.1001 | 0.9799 | 0.4900 | 0.9799 |
0.1123 | 6.0 | 750 | 0.9866 | nan | 0.9866 | 0.0 | 0.0920 | 0.9866 | 0.4933 | 0.9866 |
0.108 | 7.0 | 875 | 0.9815 | nan | 0.9815 | 0.0 | 0.0946 | 0.9815 | 0.4908 | 0.9815 |
0.1017 | 8.0 | 1000 | 0.9805 | nan | 0.9805 | 0.0 | 0.0943 | 0.9805 | 0.4903 | 0.9805 |
0.0994 | 9.0 | 1125 | 0.9808 | nan | 0.9808 | 0.0 | 0.0927 | 0.9808 | 0.4904 | 0.9808 |
0.0926 | 10.0 | 1250 | 0.9783 | nan | 0.9783 | 0.0 | 0.0957 | 0.9783 | 0.4891 | 0.9783 |
0.0907 | 11.0 | 1375 | 0.9830 | nan | 0.9830 | 0.0 | 0.0913 | 0.9830 | 0.4915 | 0.9830 |
0.0893 | 12.0 | 1500 | 0.9838 | nan | 0.9838 | 0.0 | 0.0893 | 0.9838 | 0.4919 | 0.9838 |
0.0853 | 13.0 | 1625 | 0.9804 | nan | 0.9804 | 0.0 | 0.0913 | 0.9804 | 0.4902 | 0.9804 |
0.0834 | 14.0 | 1750 | 0.9820 | nan | 0.9820 | 0.0 | 0.0899 | 0.9820 | 0.4910 | 0.9820 |
0.0861 | 15.0 | 1875 | 0.9815 | nan | 0.9815 | 0.0 | 0.0902 | 0.9815 | 0.4907 | 0.9815 |
0.0803 | 16.0 | 2000 | 0.9793 | nan | 0.9793 | 0.0 | 0.0929 | 0.9793 | 0.4897 | 0.9793 |
0.0884 | 17.0 | 2125 | 0.1001 | 0.4875 | 0.9751 | 0.9751 | nan | 0.9751 | 0.0 | 0.9751 |
0.0871 | 18.0 | 2250 | 0.0907 | 0.4892 | 0.9783 | 0.9783 | nan | 0.9783 | 0.0 | 0.9783 |
0.0854 | 19.0 | 2375 | 0.0893 | 0.4924 | 0.9849 | 0.9849 | nan | 0.9849 | 0.0 | 0.9849 |
0.0852 | 20.0 | 2500 | 0.0870 | 0.4915 | 0.9831 | 0.9831 | nan | 0.9831 | 0.0 | 0.9831 |
0.0858 | 21.0 | 2625 | 0.0925 | 0.4896 | 0.9792 | 0.9792 | nan | 0.9792 | 0.0 | 0.9792 |
0.0804 | 22.0 | 2750 | 0.0964 | 0.4887 | 0.9774 | 0.9774 | nan | 0.9774 | 0.0 | 0.9774 |
0.076 | 23.0 | 2875 | 0.0934 | 0.4893 | 0.9786 | 0.9786 | nan | 0.9786 | 0.0 | 0.9786 |
0.0753 | 24.0 | 3000 | 0.0906 | 0.4890 | 0.9781 | 0.9781 | nan | 0.9781 | 0.0 | 0.9781 |
0.0742 | 25.0 | 3125 | 0.0962 | 0.4900 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
0.0724 | 26.0 | 3250 | 0.0892 | 0.4920 | 0.9840 | 0.9840 | nan | 0.9840 | 0.0 | 0.9840 |
0.0794 | 27.0 | 3375 | 0.0885 | 0.4902 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
0.0685 | 28.0 | 3500 | 0.0932 | 0.4911 | 0.9821 | 0.9821 | nan | 0.9821 | 0.0 | 0.9821 |
0.0695 | 29.0 | 3625 | 0.0890 | 0.4906 | 0.9812 | 0.9812 | nan | 0.9812 | 0.0 | 0.9812 |
0.065 | 30.0 | 3750 | 0.0877 | 0.4904 | 0.9808 | 0.9808 | nan | 0.9808 | 0.0 | 0.9808 |
0.0699 | 31.0 | 3875 | 0.0947 | 0.4877 | 0.9754 | 0.9754 | nan | 0.9754 | 0.0 | 0.9754 |
0.0742 | 32.0 | 4000 | 0.0875 | 0.4902 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
0.0646 | 33.0 | 4125 | 0.0895 | 0.4903 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
0.0677 | 34.0 | 4250 | 0.0915 | 0.4909 | 0.9818 | 0.9818 | nan | 0.9818 | 0.0 | 0.9818 |
0.0666 | 35.0 | 4375 | 0.0932 | 0.4890 | 0.9781 | 0.9781 | nan | 0.9781 | 0.0 | 0.9781 |
0.062 | 36.0 | 4500 | 0.0893 | 0.4901 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
0.0623 | 37.0 | 4625 | 0.0934 | 0.4895 | 0.9789 | 0.9789 | nan | 0.9789 | 0.0 | 0.9789 |
0.0658 | 38.0 | 4750 | 0.0907 | 0.4913 | 0.9826 | 0.9826 | nan | 0.9826 | 0.0 | 0.9826 |
0.0596 | 39.0 | 4875 | 0.0904 | 0.4915 | 0.9831 | 0.9831 | nan | 0.9831 | 0.0 | 0.9831 |
0.0628 | 40.0 | 5000 | 0.0912 | 0.4902 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Saumya-Mundra/segformer-finetuned-tt-2k-b1
Base model
nvidia/mit-b1