./whisper-base-ea_5hr_v2

This model is a fine-tuned version of openai/whisper-base on the Afrispeech-200 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8975
  • Wer Ortho: 0.3040
  • Wer: 0.2422
  • Cer: 0.1042
  • Precision: 0.8464
  • Recall: 0.8520
  • F1: 0.8487

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer Cer Precision Recall F1
0.6333 1.1820 500 0.7882 0.3069 0.2534 0.1138 0.8481 0.8504 0.8486
0.4262 2.3641 1000 0.7221 0.2840 0.2286 0.1084 0.8567 0.8575 0.8563
0.3003 3.5461 1500 0.7234 0.2894 0.2366 0.1117 0.8542 0.8550 0.8536
0.1525 4.7281 2000 0.7478 0.3111 0.2438 0.1106 0.8490 0.8519 0.8496
0.1089 5.9102 2500 0.7886 0.3002 0.2448 0.1097 0.8475 0.8508 0.8483
0.0415 7.0922 3000 0.8303 0.3050 0.2436 0.1094 0.8460 0.8500 0.8472
0.0253 8.2742 3500 0.8590 0.3050 0.2454 0.1074 0.8433 0.8488 0.8454
0.0164 9.4563 4000 0.8975 0.3040 0.2422 0.1042 0.8464 0.8520 0.8487

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
72.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Setosm/whisper-base-ea_5hrsd_v2

Finetuned
(507)
this model