|
--- |
|
library_name: transformers |
|
language: ar |
|
pipeline_tag: text-classification |
|
tags: |
|
- text-classification |
|
- intent-classification |
|
- marbert |
|
- egyptian-arabic |
|
- nlu |
|
- e-commerce |
|
- customer-service |
|
license: apache-2.0 |
|
--- |
|
|
|
# 🌍 MARBERT for Egyptian Dialect Intent Classification (syplyd-marbert-v1) |
|
|
|
This is a fine-tuned version of [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2), specifically adapted for **intent classification** in **Egyptian Colloquial Arabic**, with a primary focus on **e-commerce** and **customer service** scenarios. |
|
|
|
It enables accurate understanding of user queries in dialectal Arabic, empowering applications like chatbots, support assistants, and ticket routing systems. |
|
|
|
--- |
|
|
|
## 🧠 Model Details |
|
|
|
- **Model Type**: `bert-for-sequence-classification` |
|
- **Base Model**: [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2) |
|
- **Language**: Arabic (Egyptian dialect) |
|
- **Developer**: Shaza Aly |
|
- **License**: Apache 2.0 |
|
- **Repository**: [https://huggingface.co/ShazaAly/syplyd-marbert-1](https://huggingface.co/ShazaAly/syplyd-marbert-1) |
|
|
|
--- |
|
|
|
## 🚀 Usage |
|
|
|
This model can be used directly with the Hugging Face `transformers` library: |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
classifier = pipeline("text-classification", model="ShazaAly/syplyd-marbert-1") |
|
|
|
# Example 1 |
|
text_1 = "عايز أعرف الأوردر بتاعي هيوصل امتى؟" |
|
print(classifier(text_1)) |
|
# Output: [{'label': 'track_order_status', 'score': ...}] |
|
|
|
# Example 2 |
|
text_2 = "المنتج ده غالي، فيه بديل أرخص؟" |
|
print(classifier(text_2)) |
|
# Output: [{'label': 'product_alternatives', 'score': ...}] |
|
|