|
--- |
|
library_name: transformers |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-fr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0056 |
|
- Rouge1: 16.1556 |
|
- Rouge2: 8.8085 |
|
- Rougel: 15.8019 |
|
- Rougelsum: 15.7787 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 6.9474 | 1.0 | 1399 | 3.3187 | 11.4251 | 4.57 | 10.9308 | 10.7649 | |
|
| 3.892 | 2.0 | 2798 | 3.1469 | 13.4445 | 6.2409 | 13.013 | 12.9006 | |
|
| 3.5863 | 3.0 | 4197 | 3.0734 | 15.1812 | 8.3203 | 14.7922 | 14.7632 | |
|
| 3.4229 | 4.0 | 5596 | 3.0587 | 16.1014 | 8.4524 | 15.8047 | 15.7134 | |
|
| 3.326 | 5.0 | 6995 | 3.0234 | 17.153 | 9.3495 | 16.6487 | 16.564 | |
|
| 3.2622 | 6.0 | 8394 | 3.0144 | 15.5588 | 8.1691 | 15.275 | 15.2065 | |
|
| 3.2163 | 7.0 | 9793 | 3.0139 | 15.8487 | 8.6641 | 15.548 | 15.511 | |
|
| 3.1948 | 8.0 | 11192 | 3.0056 | 16.1556 | 8.8085 | 15.8019 | 15.7787 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.55.4 |
|
- Pytorch 2.8.0+cu128 |
|
- Datasets 4.0.0 |
|
- Tokenizers 0.21.4 |
|
|