model_chinese_fineweb_v2_hq8_score
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0194
- Precision: 0.9966
- Recall: 0.9966
- F1 Macro: 0.9966
- Accuracy: 0.9966
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 512
- eval_batch_size: 256
- seed: 0
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
0.0383 | 0.8403 | 100 | 0.0334 | 0.9932 | 0.9931 | 0.9931 | 0.9932 |
0.0139 | 1.6807 | 200 | 0.0153 | 0.9955 | 0.9953 | 0.9954 | 0.9954 |
0.0062 | 2.5210 | 300 | 0.0134 | 0.9962 | 0.9962 | 0.9962 | 0.9962 |
0.0068 | 3.3613 | 400 | 0.0127 | 0.9967 | 0.9967 | 0.9967 | 0.9967 |
0.0022 | 4.2017 | 500 | 0.0164 | 0.9954 | 0.9954 | 0.9954 | 0.9954 |
0.0023 | 5.0420 | 600 | 0.0162 | 0.9958 | 0.9959 | 0.9958 | 0.9959 |
0.0049 | 5.8824 | 700 | 0.0163 | 0.9953 | 0.9950 | 0.9951 | 0.9951 |
0.0031 | 6.7227 | 800 | 0.0186 | 0.9957 | 0.9954 | 0.9956 | 0.9956 |
0.0015 | 7.5630 | 900 | 0.0195 | 0.9951 | 0.9950 | 0.9951 | 0.9951 |
0.0007 | 8.4034 | 1000 | 0.0183 | 0.9958 | 0.9957 | 0.9958 | 0.9958 |
0.0004 | 9.2437 | 1100 | 0.0189 | 0.9962 | 0.9962 | 0.9962 | 0.9962 |
0.001 | 10.0840 | 1200 | 0.0136 | 0.9965 | 0.9965 | 0.9965 | 0.9965 |
0.0001 | 10.9244 | 1300 | 0.0189 | 0.9967 | 0.9966 | 0.9966 | 0.9966 |
0.0006 | 11.7647 | 1400 | 0.0190 | 0.9967 | 0.9966 | 0.9966 | 0.9966 |
0.002 | 12.6050 | 1500 | 0.0242 | 0.9952 | 0.9955 | 0.9953 | 0.9953 |
0.0024 | 13.4454 | 1600 | 0.0159 | 0.9964 | 0.9964 | 0.9964 | 0.9964 |
0.0013 | 14.2857 | 1700 | 0.0168 | 0.9968 | 0.9967 | 0.9968 | 0.9968 |
0.001 | 15.1261 | 1800 | 0.0237 | 0.9954 | 0.9954 | 0.9954 | 0.9954 |
0.0008 | 15.9664 | 1900 | 0.0159 | 0.9969 | 0.9968 | 0.9968 | 0.9968 |
0.0025 | 16.8067 | 2000 | 0.0205 | 0.9966 | 0.9963 | 0.9964 | 0.9964 |
0.0001 | 17.6471 | 2100 | 0.0203 | 0.9959 | 0.9961 | 0.9960 | 0.9960 |
0.0001 | 18.4874 | 2200 | 0.0188 | 0.9963 | 0.9961 | 0.9962 | 0.9962 |
0.0012 | 19.3277 | 2300 | 0.0194 | 0.9966 | 0.9966 | 0.9966 | 0.9966 |
Framework versions
- Transformers 4.51.2
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 103
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support