SentenceTransformer based on Shuu12121/CodeModernBERT-Owl-v1

This is a sentence-transformers model finetuned from Shuu12121/CodeModernBERT-Owl-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Shuu12121/CodeModernBERT-Owl-v1
  • Maximum Sequence Length: 1024 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Computes the absolute value of each element retrieved from a strided input array `x` via a callback function and assigns each result to an element in a strided output array `y`.\n\n@param {NonNegativeInteger} N - number of indexed elements\n@param {Collection} x - input array/collection\n@param {integer} strideX - `x` stride length\n@param {NonNegativeInteger} offsetX - starting `x` index\n@param {Collection} y - destination array/collection\n@param {integer} strideY - `y` stride length\n@param {NonNegativeInteger} offsetY - starting `y` index\n@param {Callback} clbk - callback\n@param {*} [thisArg] - callback execution context\n@returns {Collection} `y`\n\n@example\nfunction accessor( v ) {\n    return v * 2.0;\n}\n\nvar x = [ 1.0, -2.0, 3.0, -4.0, 5.0 ];\nvar y = [ 0.0, 0.0, 0.0, 0.0, 0.0 ];\n\nabsBy( x.length, x, 1, 0, y, 1, 0, accessor );\n\nconsole.log( y );\n// => [ 2.0, 4.0, 6.0, 8.0, 10.0 ]',
    'function absBy( N, x, strideX, offsetX, y, strideY, offsetY, clbk, thisArg ) {\n\treturn mapBy( N, x, strideX, offsetX, y, strideY, offsetY, abs, clbk, thisArg ); // eslint-disable-line max-len\n}',
    'public ArrayList<Skyline> findSkyline(int start, int end) {\n        // Base case: only one building, return its skyline.\n        if (start == end) {\n            ArrayList<Skyline> list = new ArrayList<>();\n            list.add(new Skyline(building[start].left, building[start].height));\n            list.add(new Skyline(building[end].right, 0)); // Add the end of the building\n            return list;\n        }\n\n        int mid = (start + end) / 2;\n\n        ArrayList<Skyline> sky1 = this.findSkyline(start, mid); // Find the skyline of the left half\n        ArrayList<Skyline> sky2 = this.findSkyline(mid + 1, end); // Find the skyline of the right half\n        return this.mergeSkyline(sky1, sky2); // Merge the two skylines\n    }',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8429, 0.0136],
#         [0.8429, 1.0000, 0.1084],
#         [0.0136, 0.1084, 1.0000]])

Training Details

Training Dataset

Unnamed Dataset

  • Size: 799,680 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 8 tokens
    • mean: 72.08 tokens
    • max: 1024 tokens
    • min: 13 tokens
    • mean: 165.78 tokens
    • max: 1024 tokens
    • min: 1.0
    • mean: 1.0
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    Set the column title

    @param column - column number (first column is: 0)
    @param title - new column title
    setHeader = function(column, newValue) {
    const obj = this;

    if (obj.headers[column]) {
    const oldValue = obj.headers[column].textContent;
    const onchangeheaderOldValue = (obj.options.columns && obj.options.columns[column] && obj.options.columns[column].title)
    Elsewhere this is known as a "Weak Value Map". Whereas a std JS WeakMap
    is weak on its keys, this map is weak on its values. It does not retain these
    values strongly. If a given value disappears, then the entries for it
    disappear from every weak-value-map that holds it as a value.

    Just as a WeakMap only allows gc-able values as keys, a weak-value-map
    only allows gc-able values as values.

    Unlike a WeakMap, a weak-value-map unavoidably exposes the non-determinism of
    gc to its clients. Thus, both the ability to create one, as well as each
    created one, must be treated as dangerous capabilities that must be closely
    held. A program with access to these can read side channels though gc that do
    not* rely on the ability to measure duration. This is a separate, and bad,
    timing-independent side channel.

    This non-determinism also enables code to escape deterministic replay. In a
    blockchain context, this could cause validators to differ from each other,
    preventing consensus, and thus preventing ...
    makeFinalizingMap = (finalizer, opts) => {
    const { weakValues = false } = opts
    Creates a function that memoizes the result of func. If resolver is
    provided, it determines the cache key for storing the result based on the
    arguments provided to the memoized function. By default, the first argument
    provided to the memoized function is used as the map cache key. The func
    is invoked with the this binding of the memoized function.

    Note: The cache is exposed as the cache property on the memoized
    function. Its creation may be customized by replacing the _.memoize.Cache
    constructor with one whose instances implement the
    Map
    method interface of delete, get, has, and set.

    @static
    @memberOf _
    @since 0.1.0
    @category Function
    @param {Function} func The function to have its output memoized.
    @param {Function} [resolver] The function to resolve the cache key.
    @returns {Function} Returns the new memoized function.
    @example

    var object = { 'a': 1, 'b': 2 };
    var othe...
    function memoize(func, resolver) {
    if (typeof func != 'function'
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 120
  • per_device_eval_batch_size: 120
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 120
  • per_device_eval_batch_size: 120
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss
0.0750 500 0.2167
0.1501 1000 0.1158
0.2251 1500 0.1081
0.3001 2000 0.1079
0.3752 2500 0.0994
0.4502 3000 0.0941
0.5252 3500 0.0873
0.6002 4000 0.0967
0.6753 4500 0.0863
0.7503 5000 0.0829
0.8253 5500 0.0821
0.9004 6000 0.0821
0.9754 6500 0.0794
1.0504 7000 0.0418
1.1255 7500 0.0237
1.2005 8000 0.0233
1.2755 8500 0.0231
1.3505 9000 0.0248
1.4256 9500 0.0245
1.5006 10000 0.0237
1.5756 10500 0.025
1.6507 11000 0.0232
1.7257 11500 0.0231
1.8007 12000 0.0218
1.8758 12500 0.0233
1.9508 13000 0.0221
2.0258 13500 0.0177
2.1008 14000 0.0072
2.1759 14500 0.0066
2.2509 15000 0.0068
2.3259 15500 0.0069
2.4010 16000 0.0062
2.4760 16500 0.0068
2.5510 17000 0.0064
2.6261 17500 0.0061
2.7011 18000 0.0062
2.7761 18500 0.0058
2.8511 19000 0.0057
2.9262 19500 0.0058

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 5.0.0
  • Transformers: 4.53.1
  • PyTorch: 2.7.0+cu128
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
14
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Shuu12121/CodeSearch-ModernBERT-Owl-ph2

Finetuned
(2)
this model

Collection including Shuu12121/CodeSearch-ModernBERT-Owl-ph2