SinclairSchneider's picture
Create train.py
37c517d verified
import pandas as pd
import torch
from transformers import DebertaV2ForSequenceClassification, DebertaV2Tokenizer, DataCollatorWithPadding, Trainer, TrainingArguments
from tqdm import tqdm
from datasets import Dataset, load_dataset
import numpy as np
import wandb
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
output_dir = './german_politic_DeBERTa-v2-base'
model_name = "ikim-uk-essen/geberta-base"
max_length = 512
id2label = {0: 'other', 1: 'politic'}
label2id = {'other': 0, 'politic': 1}
wandb.init(project="german_politic_yes_no_classifier", entity="xxx", name="german_politic_DeBERTa")
model = DebertaV2ForSequenceClassification.from_pretrained(model_name, num_labels = 2, id2label=id2label, label2id=label2id, output_attentions = False, output_hidden_states = False)
tokenizer = DebertaV2Tokenizer.from_pretrained(model_name, do_lower_case=False, max_length = max_length, TOKENIZERS_PARALLELISM=True)
dataset = load_dataset("SinclairSchneider/trainset_political_text_yes_no_german")
dataset = dataset['train'].train_test_split(0.2)
def preprocess(sample):
return tokenizer(sample["text"], truncation=True)
dataset_tokenized = dataset.map(preprocess, batched = True)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
acc = accuracy_score(labels, preds)
return {
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall
}
training_args = TrainingArguments(
output_dir = output_dir,
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=4,
weight_decay=0.01,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
report_to="wandb",
fp16 = False,
logging_steps = 8,
disable_tqdm = False,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset_tokenized["train"],
eval_dataset=dataset_tokenized["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)