DermaAI - Skin Disease Classification Model

A deep learning model for classifying skin diseases using computer vision. This model can identify 5 different skin conditions with confidence scores and medical recommendations.

πŸ₯ Supported Skin Conditions

The model can classify the following skin diseases:

  1. Atopic Dermatitis - A chronic inflammatory skin condition
  2. Eczema - Inflammatory skin condition causing red, itchy patches
  3. Psoriasis - Autoimmune condition causing scaly skin patches
  4. Seborrheic Keratoses - Common benign skin growths
  5. Tinea Ringworm Candidiasis - Fungal skin infections

πŸ”§ Model Details

  • Model Type: Keras/TensorFlow model based on EfficientNetV2
  • Task: Image Classification (Multi-class)
  • Domain: Medical/Dermatology
  • Framework: TensorFlow/Keras
  • Input Size: 224x224x3 (RGB images)
  • Output: 5-class probability distribution
  • Preprocessing: EfficientNetV2 preprocessing

πŸš€ Quick Start

Basic Usage

import tensorflow as tf
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input

# Download and load the model
model_path = hf_hub_download(repo_id="Siraja704/DermaAI", filename="DermaAI.keras")
model = tf.keras.models.load_model(model_path)

# Class names
class_names = [
    'Atopic Dermatitis',
    'Eczema', 
    'Psoriasis',
    'Seborrheic Keratoses',
    'Tinea Ringworm Candidiasis'
]

# Prediction function
def predict_skin_condition(image_path):
    # Load and preprocess image
    image = Image.open(image_path).convert('RGB')
    image = image.resize((224, 224))
    image_array = np.array(image)
    image_array = preprocess_input(image_array)
    image_array = np.expand_dims(image_array, axis=0)
    
    # Make prediction
    predictions = model.predict(image_array)
    predicted_class_index = np.argmax(predictions[0])
    predicted_class = class_names[predicted_class_index]
    confidence = predictions[0][predicted_class_index] * 100
    
    return predicted_class, confidence

# Example usage
prediction, confidence = predict_skin_condition("path/to/your/image.jpg")
print(f"Prediction: {prediction} ({confidence:.2f}% confidence)")

🌐 Flask API Usage

Create a complete web API for skin disease classification:

1. Install Dependencies

pip install flask numpy tensorflow pillow flask-cors huggingface-hub

2. Create Flask Application (app.py)

from flask import Flask, request, jsonify
import numpy as np
import tensorflow as tf
import base64
import io
from PIL import Image
from flask_cors import CORS
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input
from huggingface_hub import hf_hub_download

app = Flask(__name__)
CORS(app)

# Download and load the model from Hugging Face
print("Downloading model from Hugging Face...")
model_path = hf_hub_download(repo_id="Siraja704/DermaAI", filename="DermaAI.keras")
model = tf.keras.models.load_model(model_path)
print("βœ… Model loaded successfully!")

# Class names
class_names = [
    'Atopic Dermatitis',
    'Eczema',
    'Psoriasis', 
    'Seborrheic Keratoses',
    'Tinea Ringworm Candidiasis'
]

@app.route('/predict', methods=['POST'])
def predict():
    try:
        data = request.json
        if not data or 'image' not in data:
            return jsonify({'error': 'No image data provided'}), 400
        
        # Process base64 image
        image_data = data['image']
        if 'base64,' in image_data:
            image_data = image_data.split('base64,')[1]
        
        # Decode and preprocess image
        decoded_image = base64.b64decode(image_data)
        image = Image.open(io.BytesIO(decoded_image)).convert('RGB')
        image = image.resize((224, 224))
        image_array = np.array(image)
        image_array = preprocess_input(image_array)
        image_array = np.expand_dims(image_array, axis=0)

        # Make prediction
        predictions = model.predict(image_array)
        predicted_class_index = int(np.argmax(predictions[0]))
        predicted_class = class_names[predicted_class_index]
        confidence = float(predictions[0][predicted_class_index] * 100)

        # Get top alternatives
        top_indices = np.argsort(predictions[0])[-3:][::-1]
        top_predictions = [
            {
                'class': class_names[i],
                'confidence': float(predictions[0][i] * 100)
            }
            for i in top_indices if i != predicted_class_index
        ]

        # Generate medical recommendation
        if confidence < 10:
            recommendation = "Very low confidence. Please retake image with better lighting and focus."
        elif confidence < 30:
            recommendation = "Low confidence. Preliminary result only. Consult a dermatologist."
        elif confidence < 60:
            recommendation = "Moderate confidence. Consider alternatives and consult healthcare professional."
        else:
            recommendation = "High confidence prediction. Always consult healthcare professional for confirmation."

        return jsonify({
            'prediction': predicted_class,
            'confidence': round(confidence, 2),
            'all_confidences': {
                class_names[i]: float(pred * 100) for i, pred in enumerate(predictions[0])
            },
            'top_alternatives': top_predictions,
            'recommendation': recommendation
        })

    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/health', methods=['GET'])
def health():
    return jsonify({'status': 'healthy', 'model_loaded': True})

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5001, debug=True)

3. Run the API

python app.py

The API will be available at http://localhost:5001

4. API Usage Examples

Python Client:

import requests
import base64

def predict_image(image_path, api_url="http://localhost:5001/predict"):
    with open(image_path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
    
    data = {"image": f"data:image/jpeg;base64,{encoded_string}"}
    response = requests.post(api_url, json=data)
    return response.json()

# Usage
result = predict_image("skin_image.jpg")
print(f"Prediction: {result['prediction']} ({result['confidence']}%)")

JavaScript Client:

async function predictSkinCondition(imageFile) {
    const base64 = await new Promise((resolve) => {
        const reader = new FileReader();
        reader.onload = () => resolve(reader.result);
        reader.readAsDataURL(imageFile);
    });
    
    const response = await fetch('http://localhost:5001/predict', {
        method: 'POST',
        headers: {'Content-Type': 'application/json'},
        body: JSON.stringify({image: base64})
    });
    
    return await response.json();
}

cURL:

curl -X POST http://localhost:5001/predict \
  -H "Content-Type: application/json" \
  -d '{"image": "_BASE64_IMAGE_HERE"}'

πŸ“‹ API Response Format

{
    "prediction": "Eczema",
    "confidence": 85.23,
    "all_confidences": {
        "Atopic Dermatitis": 12.45,
        "Eczema": 85.23,
        "Psoriasis": 1.32,
        "Seborrheic Keratoses": 0.67,
        "Tinea Ringworm Candidiasis": 0.33
    },
    "top_alternatives": [
        {
            "class": "Atopic Dermatitis",
            "confidence": 12.45
        }
    ],
    "recommendation": "High confidence prediction. Always consult healthcare professional for confirmation."
}

πŸ–ΌοΈ Image Requirements

  • Formats: JPG, PNG, WebP, and other common formats
  • Size: Automatically resized to 224x224 pixels
  • Quality: High-resolution images with good lighting work best
  • Focus: Ensure affected skin area is clearly visible

🐳 Docker Deployment

Dockerfile:

FROM python:3.9-slim

WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY app.py .
EXPOSE 5001
CMD ["python", "app.py"]

Requirements.txt:

flask>=2.0.0
numpy>=1.21.0
tensorflow>=2.13.0
pillow>=9.0.0
flask-cors>=3.0.0
huggingface-hub>=0.20.0

Build and Run:

docker build -t dermaai-api .
docker run -p 5001:5001 dermaai-api

βš•οΈ Important Medical Disclaimer

This model is for educational and research purposes only. It should NOT be used as a substitute for professional medical diagnosis or treatment. Always consult qualified healthcare professionals for proper medical evaluation and treatment of skin conditions.

πŸ“Š Performance Notes

  • Input: 224x224 RGB images
  • Preprocessing: EfficientNetV2 normalization
  • Architecture: Based on EfficientNetV2
  • Classes: 5 skin disease categories
  • Confidence Levels:
    • Low: < 30% (requires professional consultation)
    • Moderate: 30-60% (consider alternatives)
    • High: > 60% (still requires medical confirmation)

🀝 Citation

If you use this model in your research or applications, please cite appropriately:

@misc{dermaai2024,
  title={DermaAI: Deep Learning Model for Skin Disease Classification},
  author={Siraja704},
  year={2024},
  publisher={Hugging Face},
  url={https://huggingface.co/Siraja704/DermaAI}
}

πŸ“ License

Licensed under the Apache 2.0 License. See the LICENSE file for details.

πŸ”— Links

Downloads last month
31
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Space using Siraja704/DermaAI 1