SkyworkVL-38B: Multimodal Understanding with Bag of Tricks


Introduction

SkyworkVL-38B is an advanced VLM model trained on 2 million high-quality caption and QA samples. Leveraging innovative techniques across multiple training stages, our model delivers superior performance on a range of vision-language tasks.

🔑 Key Features

1. Multi-Resolution Processing

  • Images are processed at multiple resolutions. For each resolution (from high to low), we apply Closest Aspect Ratio Matching to partition the image into tiles. Finally, the original image is resized into a tile and appended to the final representation—ensuring comprehensive image understanding.

2. Multi-Stage Supervised Fine-Tuning (SFT)

  • Stage 1: Fine-tuning on the full dataset.
  • Stage 2: Refinement using a curated subset of 200K high-scoring samples filtered by GPT-4 evaluations.

3. High-Quality Chain-of-Thought (CoT) Fine-Tuning

  • Fine-tuning on 40K high-quality CoT data including self-collected multimodal Chinese Gaokao data with detailed analysis to boost the model’s reasoning capability.

Model Introduction

Model Name Base Model Parameters Download Link
SkyworkVL-2B OpenGVLab/InternVL2_5-2B 2B 🤗 Download
SkyworkVL-38B OpenGVLab/InternVL2_5-38B 38B 🤗 Download

Performance

Metric MathVista (testmini) MMMU (val) AI2D OCRBench MME RealWorldQA HallusionBench
Cambrain-34B 53.2 49.7 79.5 600 - 67.8 41.6
Internvl2-40B 63.7 55.2 86.6 837 2307 71.8 56.9
Internvl2.5-38B 71.9 63.9 87.6 842 2455 73.5 56.8
SkyworkVL-38B 74.4 64.0 88.4 854 2479 76.9 58.9

The performance improvements above demonstrate notable gains in multi-disciplinary question answering, object detection (BBox), and scientific chart analysis among other benchmarks.

Usage

We provide an example code to run SkyworkVL-38B using transformers

Model Loading

import torch
from transformers import AutoTokenizer, AutoModel
path = "Skywork/SkyworkVL-38B"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()

Inference with Transformers

import math
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def split_model(model_name):
    device_map = {}
    world_size = torch.cuda.device_count()
    num_layers = {
         'SkyworkVL-2B': 24, 'SkyworkVL-38B': 64}[model_name]
    num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = 0
    device_map['mlp1'] = 0
    device_map['language_model.model.tok_embeddings'] = 0
    device_map['language_model.model.embed_tokens'] = 0
    device_map['language_model.output'] = 0
    device_map['language_model.model.norm'] = 0
    device_map['language_model.model.rotary_emb'] = 0
    device_map['language_model.lm_head'] = 0
    device_map[f'language_model.model.layers.{num_layers - 1}'] = 0

    return device_map

path = 'Skywork/SkyworkVL-38B'
device_map = split_model('SkyworkVL-38B')
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    load_in_8bit=True,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True,
    device_map=device_map).eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

# set the max number of tiles in `max_num`
pixel_values = load_image('./demo/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)

# pure-text conversation (纯文本对话)
question = 'Hi, what can you do?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Can you explain quantum mechanics to me?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# image-text conversation (图文对话)
question = '<image>\nWhat do you see in this image?'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')

Citation

@misc{SkyworkVL,
  author = {Jiangbo Pei and Chris and Yichen Wei and Xiaokun Wang and Yi Peng and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou},
  title = {SkyworkVL: Multimodal Understanding with Bag of Tricks},
  year = {2025},
  publisher = {Huggingface},
  journal = {Huggingface repository},
  howpublished = {\url{https://huggingface.co/Skywork/SkyworkVL-38B}}
}
Downloads last month
2
Safetensors
Model size
38.4B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Skywork/SkyworkVL-38B

Finetuned
(3)
this model

Collection including Skywork/SkyworkVL-38B