Question Answering
Transformers
Safetensors
English
doge
text-generation
trl
sft
dpo
custom_code

Doge 160M Instruct

SmallDoge

Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by SmallDoge community, for detailed algorithm and model architecture, please refer to Wonderful Matrices, all training details and code are publicly available on the small-doge repository.

Uses

from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer

tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-160M-Instruct")
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-160M-Instruct", trust_remote_code=True)

generation_config = GenerationConfig(
      max_new_tokens=100, 
      use_cache=True, 
      do_sample=True, 
      temperature=0.8, 
      top_p=0.9,
      repetition_penalty=1.0
)
steamer = TextStreamer(
      tokenizer=tokenizer, 
      skip_prompt=True
)

prompt = "Hi, how are you doing today?"
conversation = [
      {"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(
    conversation=conversation,
    tokenize=True,
    return_tensors="pt",
)

outputs = model.generate(
    inputs, 
    tokenizer=tokenizer,
    generation_config=generation_config, 
    streamer=steamer
)

Model Details

We build the Doge-Instruct by first SFT on SmolTalk and then DPO on UltraFeedback Binarized.

TODO: The larger model is under training and will be uploaded soon.

SFT:

Model Training Data Epochs Content Length LR Batch Size Precision
Doge-20M-Instruct-SFT HuggingFaceTB/smoltalk 2 2048 8e-4 0.25M bfloat16
Doge-60M-Instruct-SFT HuggingFaceTB/smoltalk 2 2048 6e-4 0.25M bfloat16
Doge-160M-Instruct-SFT HuggingFaceTB/smoltalk 2 2048 4e-4 0.25M bfloat16

DPO:

Model Training Data Epochs Content Length LR Batch Size Precision
Doge-20M-Instruct HuggingFaceH4/ultrafeedback_binarized 2 1024 8e-5 0.125M bfloat16
Doge-60M-Instruct HuggingFaceH4/ultrafeedback_binarized 2 1024 6e-5 0.125M bfloat16
Doge-160M-Instruct HuggingFaceH4/ultrafeedback_binarized 2 1024 4e-5 0.125M bfloat16

Evaluation:

Model IFEval (Prompt Strict Acc) MMLU BBH ARC PIQA HellaSwag tokens / s on i7-11 CPU
Doge-20M-Instruct 7.3 26.3 18.3 29.2 57.8 27.8 142
Doge-60M-Instruct 7.4 27.5 27.7 37.5 61.4 32.1 62
SmolLM-135M-Instruct 12.2 28.3 25.2 33.9 64.0 38.9 30
Doge-160M-Instruct 16.8 29.7 29.1 42.8 64.1 37.1 28

Procedure:

SFT: Visualize in Weights & Biases

DPO: Visualize in Weights & Biases

Environment:

  • Image: nvcr.io/nvidia/pytorch:24.12-py3
  • Hardware: 1x NVIDIA RTX 4090
  • Software: Transformers, TRL

Citation

@misc{shi2024wonderfulmatrices,
      title={Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture}, 
      author={Jingze Shi and Bingheng Wu},
      year={2024},
      eprint={2412.11834},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2412.11834}, 
}
Downloads last month
19,690
Safetensors
Model size
153M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support model that require custom code execution.

Model tree for SmallDoge/Doge-160M-Instruct

Finetuned
(3)
this model

Datasets used to train SmallDoge/Doge-160M-Instruct

Collection including SmallDoge/Doge-160M-Instruct