language:
- en
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:443147
- loss:Distillation
base_model: artiwise-ai/modernbert-base-tr-uncased
datasets:
- Speedsy/msmarco-cleaned-gemini-bge-tr-uncased
pipeline_tag: sentence-similarity
library_name: PyLate
metrics:
- MaxSim_accuracy@1
- MaxSim_accuracy@3
- MaxSim_accuracy@5
- MaxSim_accuracy@10
- MaxSim_precision@1
- MaxSim_precision@3
- MaxSim_precision@5
- MaxSim_precision@10
- MaxSim_recall@1
- MaxSim_recall@3
- MaxSim_recall@5
- MaxSim_recall@10
- MaxSim_ndcg@10
- MaxSim_mrr@10
- MaxSim_map@100
model-index:
- name: PyLate model based on artiwise-ai/modernbert-base-tr-uncased
results:
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: MaxSim_accuracy@1
value: 0.8
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.94
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.96
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.8
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.68
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.612
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.536
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.10078717061354299
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.19682685208991746
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.258824166054344
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.38800863179756623
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6698534967697684
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8705555555555557
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5286285310884441
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: MaxSim_accuracy@1
value: 0.5
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.68
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.72
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.72
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.5
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.21999999999999997
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.126
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.2625793650793651
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.4490714285714285
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.510595238095238
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.5433730158730159
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.48685797628778266
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5813333333333333
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.4240652086517142
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: MaxSim_accuracy@1
value: 0.92
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 1
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.92
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.5133333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.336
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.17
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.46
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.77
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.84
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.85
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.8348237890721252
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.9566666666666667
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.7765272955432649
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: MaxSim_accuracy@1
value: 0.44
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.6
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.72
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.78
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.44
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.2
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.14400000000000002
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.07800000000000001
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.44
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.6
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.72
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.78
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6061357635735324
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5503333333333333
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5606473245064795
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: MaxSim_accuracy@1
value: 0.6
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.7
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.78
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.84
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.6
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.24
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.16
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.09
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.59
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.69
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.74
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.81
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.7019653954825936
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6725
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.6681879355431987
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: MaxSim_accuracy@1
value: 0.4
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.56
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.62
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.4
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.26666666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.22399999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.158
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.08366666666666667
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.16466666666666668
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.2306666666666667
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.3246666666666666
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.31820509001212194
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5138571428571429
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.2394188185272444
name: Maxsim Map@100
- task:
type: pylate-custom-nano-beir
name: Pylate Custom Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: MaxSim_accuracy@1
value: 0.61
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.7466666666666667
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.7999999999999999
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8566666666666666
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.61
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.36666666666666664
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.2826666666666666
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.19300000000000003
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.32283886705992915
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.4784274912213355
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.5500143451360414
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.6160080523895414
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.602973585199654
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6908743386243387
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5329125189767242
name: Maxsim Map@100
PyLate model based on artiwise-ai/modernbert-base-tr-uncased
This is a PyLate model finetuned from artiwise-ai/modernbert-base-tr-uncased on the train dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
Model Details
Model Description
- Model Type: PyLate model
- Base model: artiwise-ai/modernbert-base-tr-uncased
- Document Length: 180 tokens
- Query Length: 32 tokens
- Output Dimensionality: 128 tokens
- Similarity Function: MaxSim
- Training Dataset:
- Language: en
Model Sources
- Documentation: PyLate Documentation
- Repository: PyLate on GitHub
- Hugging Face: PyLate models on Hugging Face
Full Model Architecture
ColBERT(
(0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
First install the PyLate library:
pip install -U pylate
Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
Evaluation
Metrics
Py Late Information Retrieval
- Dataset:
['NanoDBPedia', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNQ', 'NanoSCIDOCS']
- Evaluated with
pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
Metric | NanoDBPedia | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNQ | NanoSCIDOCS |
---|---|---|---|---|---|---|
MaxSim_accuracy@1 | 0.8 | 0.5 | 0.92 | 0.44 | 0.6 | 0.4 |
MaxSim_accuracy@3 | 0.94 | 0.68 | 1.0 | 0.6 | 0.7 | 0.56 |
MaxSim_accuracy@5 | 0.96 | 0.72 | 1.0 | 0.72 | 0.78 | 0.62 |
MaxSim_accuracy@10 | 1.0 | 0.72 | 1.0 | 0.78 | 0.84 | 0.8 |
MaxSim_precision@1 | 0.8 | 0.5 | 0.92 | 0.44 | 0.6 | 0.4 |
MaxSim_precision@3 | 0.68 | 0.3 | 0.5133 | 0.2 | 0.24 | 0.2667 |
MaxSim_precision@5 | 0.612 | 0.22 | 0.336 | 0.144 | 0.16 | 0.224 |
MaxSim_precision@10 | 0.536 | 0.126 | 0.17 | 0.078 | 0.09 | 0.158 |
MaxSim_recall@1 | 0.1008 | 0.2626 | 0.46 | 0.44 | 0.59 | 0.0837 |
MaxSim_recall@3 | 0.1968 | 0.4491 | 0.77 | 0.6 | 0.69 | 0.1647 |
MaxSim_recall@5 | 0.2588 | 0.5106 | 0.84 | 0.72 | 0.74 | 0.2307 |
MaxSim_recall@10 | 0.388 | 0.5434 | 0.85 | 0.78 | 0.81 | 0.3247 |
MaxSim_ndcg@10 | 0.6699 | 0.4869 | 0.8348 | 0.6061 | 0.702 | 0.3182 |
MaxSim_mrr@10 | 0.8706 | 0.5813 | 0.9567 | 0.5503 | 0.6725 | 0.5139 |
MaxSim_map@100 | 0.5286 | 0.4241 | 0.7765 | 0.5606 | 0.6682 | 0.2394 |
Pylate Custom Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
pylate_nano_beir_evaluator.PylateCustomNanoBEIREvaluator
Metric | Value |
---|---|
MaxSim_accuracy@1 | 0.61 |
MaxSim_accuracy@3 | 0.7467 |
MaxSim_accuracy@5 | 0.8 |
MaxSim_accuracy@10 | 0.8567 |
MaxSim_precision@1 | 0.61 |
MaxSim_precision@3 | 0.3667 |
MaxSim_precision@5 | 0.2827 |
MaxSim_precision@10 | 0.193 |
MaxSim_recall@1 | 0.3228 |
MaxSim_recall@3 | 0.4784 |
MaxSim_recall@5 | 0.55 |
MaxSim_recall@10 | 0.616 |
MaxSim_ndcg@10 | 0.603 |
MaxSim_mrr@10 | 0.6909 |
MaxSim_map@100 | 0.5329 |
Training Details
Training Dataset
train
- Dataset: train at bd034f5
- Size: 443,147 training samples
- Columns:
query_id
,document_ids
, andscores
- Approximate statistics based on the first 1000 samples:
query_id document_ids scores type string list list details - min: 5 tokens
- mean: 6.21 tokens
- max: 8 tokens
- size: 32 elements
- size: 32 elements
- Samples:
query_id document_ids scores 817836
['2716076', '6741935', '2681109', '5562684', '3507339', ...]
[1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]
1045170
['5088671', '2953295', '8783471', '4268439', '6339935', ...]
[1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]
1069432
['3724008', '314949', '8657336', '7420456', '879004', ...]
[1.0, 0.3706032931804657, 0.3508036434650421, 0.2823200523853302, 0.17563475668430328, ...]
- Loss:
pylate.losses.distillation.Distillation
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsgradient_accumulation_steps
: 2learning_rate
: 3e-05num_train_epochs
: 1bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | NanoDBPedia_MaxSim_ndcg@10 | NanoFiQA2018_MaxSim_ndcg@10 | NanoHotpotQA_MaxSim_ndcg@10 | NanoMSMARCO_MaxSim_ndcg@10 | NanoNQ_MaxSim_ndcg@10 | NanoSCIDOCS_MaxSim_ndcg@10 | NanoBEIR_mean_MaxSim_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|
0.0036 | 100 | 0.0649 | - | - | - | - | - | - | - |
0.0072 | 200 | 0.0559 | - | - | - | - | - | - | - |
0.0108 | 300 | 0.0518 | - | - | - | - | - | - | - |
0.0144 | 400 | 0.051 | - | - | - | - | - | - | - |
0.0181 | 500 | 0.0492 | 0.6421 | 0.3808 | 0.7993 | 0.5565 | 0.5826 | 0.3050 | 0.5444 |
0.0217 | 600 | 0.0467 | - | - | - | - | - | - | - |
0.0253 | 700 | 0.0451 | - | - | - | - | - | - | - |
0.0289 | 800 | 0.0443 | - | - | - | - | - | - | - |
0.0325 | 900 | 0.0443 | - | - | - | - | - | - | - |
0.0361 | 1000 | 0.0437 | 0.6449 | 0.4015 | 0.8003 | 0.5437 | 0.6092 | 0.3134 | 0.5522 |
0.0397 | 1100 | 0.0433 | - | - | - | - | - | - | - |
0.0433 | 1200 | 0.0427 | - | - | - | - | - | - | - |
0.0469 | 1300 | 0.0414 | - | - | - | - | - | - | - |
0.0505 | 1400 | 0.0417 | - | - | - | - | - | - | - |
0.0542 | 1500 | 0.0418 | 0.6412 | 0.4285 | 0.8154 | 0.5866 | 0.6181 | 0.3219 | 0.5686 |
0.0578 | 1600 | 0.0404 | - | - | - | - | - | - | - |
0.0614 | 1700 | 0.0417 | - | - | - | - | - | - | - |
0.0650 | 1800 | 0.0407 | - | - | - | - | - | - | - |
0.0686 | 1900 | 0.0398 | - | - | - | - | - | - | - |
0.0722 | 2000 | 0.0401 | 0.6499 | 0.4354 | 0.8150 | 0.5610 | 0.6445 | 0.3152 | 0.5702 |
0.0758 | 2100 | 0.0404 | - | - | - | - | - | - | - |
0.0794 | 2200 | 0.0395 | - | - | - | - | - | - | - |
0.0830 | 2300 | 0.0404 | - | - | - | - | - | - | - |
0.0867 | 2400 | 0.0393 | - | - | - | - | - | - | - |
0.0903 | 2500 | 0.0387 | 0.6571 | 0.4435 | 0.8112 | 0.5786 | 0.6809 | 0.3232 | 0.5824 |
0.0939 | 2600 | 0.0397 | - | - | - | - | - | - | - |
0.0975 | 2700 | 0.0393 | - | - | - | - | - | - | - |
0.1011 | 2800 | 0.0384 | - | - | - | - | - | - | - |
0.1047 | 2900 | 0.0382 | - | - | - | - | - | - | - |
0.1083 | 3000 | 0.0381 | 0.6437 | 0.4751 | 0.8175 | 0.5711 | 0.6422 | 0.3203 | 0.5783 |
0.1119 | 3100 | 0.0382 | - | - | - | - | - | - | - |
0.1155 | 3200 | 0.0381 | - | - | - | - | - | - | - |
0.1191 | 3300 | 0.0385 | - | - | - | - | - | - | - |
0.1228 | 3400 | 0.0374 | - | - | - | - | - | - | - |
0.1264 | 3500 | 0.0382 | 0.6437 | 0.4833 | 0.8282 | 0.5955 | 0.6436 | 0.3190 | 0.5856 |
0.1300 | 3600 | 0.0365 | - | - | - | - | - | - | - |
0.1336 | 3700 | 0.0379 | - | - | - | - | - | - | - |
0.1372 | 3800 | 0.0376 | - | - | - | - | - | - | - |
0.1408 | 3900 | 0.0376 | - | - | - | - | - | - | - |
0.1444 | 4000 | 0.0378 | 0.6511 | 0.4760 | 0.8151 | 0.5806 | 0.6874 | 0.3140 | 0.5874 |
0.1480 | 4100 | 0.0365 | - | - | - | - | - | - | - |
0.1516 | 4200 | 0.0362 | - | - | - | - | - | - | - |
0.1553 | 4300 | 0.0374 | - | - | - | - | - | - | - |
0.1589 | 4400 | 0.0359 | - | - | - | - | - | - | - |
0.1625 | 4500 | 0.0368 | 0.6530 | 0.4458 | 0.8122 | 0.6101 | 0.6896 | 0.3174 | 0.5880 |
0.1661 | 4600 | 0.0356 | - | - | - | - | - | - | - |
0.1697 | 4700 | 0.0364 | - | - | - | - | - | - | - |
0.1733 | 4800 | 0.0352 | - | - | - | - | - | - | - |
0.1769 | 4900 | 0.0357 | - | - | - | - | - | - | - |
0.1805 | 5000 | 0.0366 | 0.6611 | 0.4680 | 0.8152 | 0.6260 | 0.6715 | 0.3252 | 0.5945 |
0.1841 | 5100 | 0.0358 | - | - | - | - | - | - | - |
0.1877 | 5200 | 0.0366 | - | - | - | - | - | - | - |
0.1914 | 5300 | 0.0348 | - | - | - | - | - | - | - |
0.1950 | 5400 | 0.036 | - | - | - | - | - | - | - |
0.1986 | 5500 | 0.0337 | 0.6595 | 0.4823 | 0.8162 | 0.6241 | 0.6620 | 0.3216 | 0.5943 |
0.2022 | 5600 | 0.0347 | - | - | - | - | - | - | - |
0.2058 | 5700 | 0.0361 | - | - | - | - | - | - | - |
0.2094 | 5800 | 0.0356 | - | - | - | - | - | - | - |
0.2130 | 5900 | 0.0359 | - | - | - | - | - | - | - |
0.2166 | 6000 | 0.0359 | 0.6560 | 0.4820 | 0.8121 | 0.6457 | 0.6587 | 0.3181 | 0.5954 |
0.2202 | 6100 | 0.0347 | - | - | - | - | - | - | - |
0.2239 | 6200 | 0.0355 | - | - | - | - | - | - | - |
0.2275 | 6300 | 0.0356 | - | - | - | - | - | - | - |
0.2311 | 6400 | 0.0351 | - | - | - | - | - | - | - |
0.2347 | 6500 | 0.0351 | 0.6650 | 0.4658 | 0.8291 | 0.6167 | 0.6742 | 0.3146 | 0.5942 |
0.2383 | 6600 | 0.0361 | - | - | - | - | - | - | - |
0.2419 | 6700 | 0.0352 | - | - | - | - | - | - | - |
0.2455 | 6800 | 0.0358 | - | - | - | - | - | - | - |
0.2491 | 6900 | 0.0339 | - | - | - | - | - | - | - |
0.2527 | 7000 | 0.0345 | 0.6600 | 0.4700 | 0.8413 | 0.6449 | 0.6862 | 0.3163 | 0.6031 |
0.2563 | 7100 | 0.0347 | - | - | - | - | - | - | - |
0.2600 | 7200 | 0.0346 | - | - | - | - | - | - | - |
0.2636 | 7300 | 0.0342 | - | - | - | - | - | - | - |
0.2672 | 7400 | 0.0346 | - | - | - | - | - | - | - |
0.2708 | 7500 | 0.0339 | 0.6583 | 0.4792 | 0.8295 | 0.6257 | 0.6788 | 0.3204 | 0.5986 |
0.2744 | 7600 | 0.0344 | - | - | - | - | - | - | - |
0.2780 | 7700 | 0.0323 | - | - | - | - | - | - | - |
0.2816 | 7800 | 0.0333 | - | - | - | - | - | - | - |
0.2852 | 7900 | 0.0334 | - | - | - | - | - | - | - |
0.2888 | 8000 | 0.0333 | 0.6633 | 0.4660 | 0.8257 | 0.6251 | 0.6847 | 0.3229 | 0.5979 |
0.2925 | 8100 | 0.0337 | - | - | - | - | - | - | - |
0.2961 | 8200 | 0.0339 | - | - | - | - | - | - | - |
0.2997 | 8300 | 0.0332 | - | - | - | - | - | - | - |
0.3033 | 8400 | 0.0334 | - | - | - | - | - | - | - |
0.3069 | 8500 | 0.0334 | 0.6744 | 0.4791 | 0.8204 | 0.6139 | 0.6654 | 0.3130 | 0.5944 |
0.3105 | 8600 | 0.032 | - | - | - | - | - | - | - |
0.3141 | 8700 | 0.0342 | - | - | - | - | - | - | - |
0.3177 | 8800 | 0.0337 | - | - | - | - | - | - | - |
0.3213 | 8900 | 0.0343 | - | - | - | - | - | - | - |
0.3249 | 9000 | 0.0342 | 0.6643 | 0.4395 | 0.8270 | 0.6252 | 0.6828 | 0.3146 | 0.5922 |
0.3286 | 9100 | 0.0332 | - | - | - | - | - | - | - |
0.3322 | 9200 | 0.0337 | - | - | - | - | - | - | - |
0.3358 | 9300 | 0.033 | - | - | - | - | - | - | - |
0.3394 | 9400 | 0.0327 | - | - | - | - | - | - | - |
0.3430 | 9500 | 0.0332 | 0.6676 | 0.4530 | 0.8400 | 0.6220 | 0.6753 | 0.3139 | 0.5953 |
0.3466 | 9600 | 0.0315 | - | - | - | - | - | - | - |
0.3502 | 9700 | 0.033 | - | - | - | - | - | - | - |
0.3538 | 9800 | 0.0331 | - | - | - | - | - | - | - |
0.3574 | 9900 | 0.0341 | - | - | - | - | - | - | - |
0.3610 | 10000 | 0.0327 | 0.6602 | 0.4887 | 0.8308 | 0.6267 | 0.6806 | 0.3241 | 0.6018 |
0.3647 | 10100 | 0.0338 | - | - | - | - | - | - | - |
0.3683 | 10200 | 0.0327 | - | - | - | - | - | - | - |
0.3719 | 10300 | 0.0325 | - | - | - | - | - | - | - |
0.3755 | 10400 | 0.0342 | - | - | - | - | - | - | - |
0.3791 | 10500 | 0.034 | 0.6659 | 0.4723 | 0.8313 | 0.6156 | 0.6803 | 0.3240 | 0.5982 |
0.3827 | 10600 | 0.0323 | - | - | - | - | - | - | - |
0.3863 | 10700 | 0.0329 | - | - | - | - | - | - | - |
0.3899 | 10800 | 0.0328 | - | - | - | - | - | - | - |
0.3935 | 10900 | 0.0324 | - | - | - | - | - | - | - |
0.3972 | 11000 | 0.0321 | 0.6628 | 0.4937 | 0.8340 | 0.6373 | 0.6945 | 0.3268 | 0.6082 |
0.4008 | 11100 | 0.0329 | - | - | - | - | - | - | - |
0.4044 | 11200 | 0.0329 | - | - | - | - | - | - | - |
0.4080 | 11300 | 0.0325 | - | - | - | - | - | - | - |
0.4116 | 11400 | 0.0321 | - | - | - | - | - | - | - |
0.4152 | 11500 | 0.0325 | 0.6617 | 0.4698 | 0.8419 | 0.6231 | 0.6853 | 0.3191 | 0.6002 |
0.4188 | 11600 | 0.0327 | - | - | - | - | - | - | - |
0.4224 | 11700 | 0.0327 | - | - | - | - | - | - | - |
0.4260 | 11800 | 0.0326 | - | - | - | - | - | - | - |
0.4296 | 11900 | 0.0329 | - | - | - | - | - | - | - |
0.4333 | 12000 | 0.0332 | 0.6559 | 0.4860 | 0.8324 | 0.6160 | 0.6966 | 0.3219 | 0.6015 |
0.4369 | 12100 | 0.0323 | - | - | - | - | - | - | - |
0.4405 | 12200 | 0.0327 | - | - | - | - | - | - | - |
0.4441 | 12300 | 0.0321 | - | - | - | - | - | - | - |
0.4477 | 12400 | 0.0321 | - | - | - | - | - | - | - |
0.4513 | 12500 | 0.0319 | 0.6630 | 0.4877 | 0.8310 | 0.6197 | 0.6943 | 0.3296 | 0.6042 |
0.4549 | 12600 | 0.0326 | - | - | - | - | - | - | - |
0.4585 | 12700 | 0.032 | - | - | - | - | - | - | - |
0.4621 | 12800 | 0.032 | - | - | - | - | - | - | - |
0.4658 | 12900 | 0.0302 | - | - | - | - | - | - | - |
0.4694 | 13000 | 0.0311 | 0.6687 | 0.4726 | 0.8305 | 0.6191 | 0.6929 | 0.3233 | 0.6012 |
0.4730 | 13100 | 0.0321 | - | - | - | - | - | - | - |
0.4766 | 13200 | 0.0318 | - | - | - | - | - | - | - |
0.4802 | 13300 | 0.032 | - | - | - | - | - | - | - |
0.4838 | 13400 | 0.0315 | - | - | - | - | - | - | - |
0.4874 | 13500 | 0.0317 | 0.6628 | 0.4781 | 0.8257 | 0.6153 | 0.6795 | 0.3172 | 0.5964 |
0.4910 | 13600 | 0.0316 | - | - | - | - | - | - | - |
0.4946 | 13700 | 0.0335 | - | - | - | - | - | - | - |
0.4982 | 13800 | 0.0313 | - | - | - | - | - | - | - |
0.5019 | 13900 | 0.0317 | - | - | - | - | - | - | - |
0.5055 | 14000 | 0.0321 | 0.6579 | 0.4676 | 0.8351 | 0.6088 | 0.6774 | 0.3211 | 0.5946 |
0.5091 | 14100 | 0.0318 | - | - | - | - | - | - | - |
0.5127 | 14200 | 0.0328 | - | - | - | - | - | - | - |
0.5163 | 14300 | 0.0307 | - | - | - | - | - | - | - |
0.5199 | 14400 | 0.0326 | - | - | - | - | - | - | - |
0.5235 | 14500 | 0.0322 | 0.6558 | 0.5042 | 0.8344 | 0.6093 | 0.6963 | 0.3244 | 0.6041 |
0.5271 | 14600 | 0.0321 | - | - | - | - | - | - | - |
0.5307 | 14700 | 0.0308 | - | - | - | - | - | - | - |
0.5344 | 14800 | 0.0315 | - | - | - | - | - | - | - |
0.5380 | 14900 | 0.0324 | - | - | - | - | - | - | - |
0.5416 | 15000 | 0.0305 | 0.6598 | 0.4898 | 0.8402 | 0.6081 | 0.6945 | 0.3207 | 0.6022 |
0.5452 | 15100 | 0.0324 | - | - | - | - | - | - | - |
0.5488 | 15200 | 0.0315 | - | - | - | - | - | - | - |
0.5524 | 15300 | 0.0311 | - | - | - | - | - | - | - |
0.5560 | 15400 | 0.0317 | - | - | - | - | - | - | - |
0.5596 | 15500 | 0.0309 | 0.6541 | 0.4770 | 0.8309 | 0.6234 | 0.6946 | 0.3282 | 0.6014 |
0.5632 | 15600 | 0.0322 | - | - | - | - | - | - | - |
0.5668 | 15700 | 0.0314 | - | - | - | - | - | - | - |
0.5705 | 15800 | 0.0312 | - | - | - | - | - | - | - |
0.5741 | 15900 | 0.0301 | - | - | - | - | - | - | - |
0.5777 | 16000 | 0.0316 | 0.6699 | 0.4869 | 0.8348 | 0.6061 | 0.7020 | 0.3182 | 0.6030 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.0.2
- PyLate: 1.2.0
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
PyLate
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}