File size: 69,917 Bytes
fca348c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 |
---
language:
- en
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:443147
- loss:Distillation
base_model: artiwise-ai/modernbert-base-tr-uncased
datasets:
- Speedsy/msmarco-cleaned-gemini-bge-tr-uncased
pipeline_tag: sentence-similarity
library_name: PyLate
metrics:
- MaxSim_accuracy@1
- MaxSim_accuracy@3
- MaxSim_accuracy@5
- MaxSim_accuracy@10
- MaxSim_precision@1
- MaxSim_precision@3
- MaxSim_precision@5
- MaxSim_precision@10
- MaxSim_recall@1
- MaxSim_recall@3
- MaxSim_recall@5
- MaxSim_recall@10
- MaxSim_ndcg@10
- MaxSim_mrr@10
- MaxSim_map@100
model-index:
- name: PyLate model based on artiwise-ai/modernbert-base-tr-uncased
results:
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: MaxSim_accuracy@1
value: 0.8
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.92
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.96
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1.0
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.8
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.6733333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.6
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.548
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.08578717061354299
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.1830130267260073
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.2593375700877878
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.39135854315858964
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6725979752170759
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8711111111111113
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5248067100703537
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: MaxSim_accuracy@1
value: 0.46
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.68
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.72
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.72
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.46
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.22399999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.128
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.23257936507936505
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.4590714285714285
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.5128174603174602
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.5457063492063492
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.4798674129130085
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5623333333333332
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.4143816306136937
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: MaxSim_accuracy@1
value: 0.9
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 1.0
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1.0
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1.0
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.9
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.5133333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.32799999999999996
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.16799999999999998
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.45
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.77
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.82
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.84
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.8249212341756258
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.9466666666666668
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.7682039396944715
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: MaxSim_accuracy@1
value: 0.46
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.62
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.7
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.82
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.46
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.20666666666666667
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.14
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.08199999999999999
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.46
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.62
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.7
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.82
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6299271879198127
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5706666666666667
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5763825115906536
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: MaxSim_accuracy@1
value: 0.58
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.68
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.78
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.82
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.58
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.2333333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.16399999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.088
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.57
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.67
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.75
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.8
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6865185478036829
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6540238095238096
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.6518842133610925
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: MaxSim_accuracy@1
value: 0.42
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.6
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.64
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.42
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.2866666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.22399999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.158
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.08866666666666667
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.17766666666666667
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.2306666666666667
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.32466666666666666
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.3241741723269819
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5367777777777778
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.24410449875234425
name: Maxsim Map@100
- task:
type: pylate-custom-nano-beir
name: Pylate Custom Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: MaxSim_accuracy@1
value: 0.6033333333333334
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.75
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.7999999999999999
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8599999999999999
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.6033333333333334
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3688888888888889
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.27999999999999997
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.19533333333333333
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.3145055337265958
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.4799585203273504
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.5454702828453192
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.6202885931719342
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6030010883926978
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6902632275132276
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5299605840137683
name: Maxsim Map@100
---
# PyLate model based on artiwise-ai/modernbert-base-tr-uncased
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [artiwise-ai/modernbert-base-tr-uncased](https://huggingface.co/artiwise-ai/modernbert-base-tr-uncased) on the [train](https://huggingface.co/datasets/Speedsy/msmarco-cleaned-gemini-bge-tr-uncased) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
## Model Details
### Model Description
- **Model Type:** PyLate model
- **Base model:** [artiwise-ai/modernbert-base-tr-uncased](https://huggingface.co/artiwise-ai/modernbert-base-tr-uncased) <!-- at revision fe2ec5fcfd7afd1e0378d295dfd7fadfb55ea965 -->
- **Document Length:** 180 tokens
- **Query Length:** 32 tokens
- **Output Dimensionality:** 128 tokens
- **Similarity Function:** MaxSim
- **Training Dataset:**
- [train](https://huggingface.co/datasets/Speedsy/msmarco-cleaned-gemini-bge-tr-uncased)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
### Full Model Architecture
```
ColBERT(
(0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```
## Usage
First install the PyLate library:
```bash
pip install -U pylate
```
### Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
#### Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
```python
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
```
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
```
#### Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
```
### Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
```python
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Py Late Information Retrieval
* Dataset: `['NanoDBPedia', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNQ', 'NanoSCIDOCS']`
* Evaluated with <code>pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator</code>
| Metric | NanoDBPedia | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNQ | NanoSCIDOCS |
|:--------------------|:------------|:-------------|:-------------|:------------|:-----------|:------------|
| MaxSim_accuracy@1 | 0.8 | 0.46 | 0.9 | 0.46 | 0.58 | 0.42 |
| MaxSim_accuracy@3 | 0.92 | 0.68 | 1.0 | 0.62 | 0.68 | 0.6 |
| MaxSim_accuracy@5 | 0.96 | 0.72 | 1.0 | 0.7 | 0.78 | 0.64 |
| MaxSim_accuracy@10 | 1.0 | 0.72 | 1.0 | 0.82 | 0.82 | 0.8 |
| MaxSim_precision@1 | 0.8 | 0.46 | 0.9 | 0.46 | 0.58 | 0.42 |
| MaxSim_precision@3 | 0.6733 | 0.3 | 0.5133 | 0.2067 | 0.2333 | 0.2867 |
| MaxSim_precision@5 | 0.6 | 0.224 | 0.328 | 0.14 | 0.164 | 0.224 |
| MaxSim_precision@10 | 0.548 | 0.128 | 0.168 | 0.082 | 0.088 | 0.158 |
| MaxSim_recall@1 | 0.0858 | 0.2326 | 0.45 | 0.46 | 0.57 | 0.0887 |
| MaxSim_recall@3 | 0.183 | 0.4591 | 0.77 | 0.62 | 0.67 | 0.1777 |
| MaxSim_recall@5 | 0.2593 | 0.5128 | 0.82 | 0.7 | 0.75 | 0.2307 |
| MaxSim_recall@10 | 0.3914 | 0.5457 | 0.84 | 0.82 | 0.8 | 0.3247 |
| **MaxSim_ndcg@10** | **0.6726** | **0.4799** | **0.8249** | **0.6299** | **0.6865** | **0.3242** |
| MaxSim_mrr@10 | 0.8711 | 0.5623 | 0.9467 | 0.5707 | 0.654 | 0.5368 |
| MaxSim_map@100 | 0.5248 | 0.4144 | 0.7682 | 0.5764 | 0.6519 | 0.2441 |
#### Pylate Custom Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with <code>pylate_nano_beir_evaluator.PylateCustomNanoBEIREvaluator</code>
| Metric | Value |
|:--------------------|:----------|
| MaxSim_accuracy@1 | 0.6033 |
| MaxSim_accuracy@3 | 0.75 |
| MaxSim_accuracy@5 | 0.8 |
| MaxSim_accuracy@10 | 0.86 |
| MaxSim_precision@1 | 0.6033 |
| MaxSim_precision@3 | 0.3689 |
| MaxSim_precision@5 | 0.28 |
| MaxSim_precision@10 | 0.1953 |
| MaxSim_recall@1 | 0.3145 |
| MaxSim_recall@3 | 0.48 |
| MaxSim_recall@5 | 0.5455 |
| MaxSim_recall@10 | 0.6203 |
| **MaxSim_ndcg@10** | **0.603** |
| MaxSim_mrr@10 | 0.6903 |
| MaxSim_map@100 | 0.53 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### train
* Dataset: [train](https://huggingface.co/datasets/Speedsy/msmarco-cleaned-gemini-bge-tr-uncased) at [bd034f5](https://huggingface.co/datasets/Speedsy/msmarco-cleaned-gemini-bge-tr-uncased/tree/bd034f56291b3b7a7dcde55ab0bd933977cc233e)
* Size: 443,147 training samples
* Columns: <code>query_id</code>, <code>document_ids</code>, and <code>scores</code>
* Approximate statistics based on the first 1000 samples:
| | query_id | document_ids | scores |
|:--------|:--------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
| type | string | list | list |
| details | <ul><li>min: 5 tokens</li><li>mean: 6.21 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>size: 32 elements</li></ul> | <ul><li>size: 32 elements</li></ul> |
* Samples:
| query_id | document_ids | scores |
|:---------------------|:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|
| <code>817836</code> | <code>['2716076', '6741935', '2681109', '5562684', '3507339', ...]</code> | <code>[1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]</code> |
| <code>1045170</code> | <code>['5088671', '2953295', '8783471', '4268439', '6339935', ...]</code> | <code>[1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]</code> |
| <code>1069432</code> | <code>['3724008', '314949', '8657336', '7420456', '879004', ...]</code> | <code>[1.0, 0.3706032931804657, 0.3508036434650421, 0.2823200523853302, 0.17563475668430328, ...]</code> |
* Loss: <code>pylate.losses.distillation.Distillation</code>
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `gradient_accumulation_steps`: 2
- `learning_rate`: 3e-05
- `num_train_epochs`: 1
- `bf16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | NanoDBPedia_MaxSim_ndcg@10 | NanoFiQA2018_MaxSim_ndcg@10 | NanoHotpotQA_MaxSim_ndcg@10 | NanoMSMARCO_MaxSim_ndcg@10 | NanoNQ_MaxSim_ndcg@10 | NanoSCIDOCS_MaxSim_ndcg@10 | NanoBEIR_mean_MaxSim_ndcg@10 |
|:------:|:-----:|:-------------:|:--------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------:|:--------------------------:|:----------------------------:|
| 0.0036 | 100 | 0.0649 | - | - | - | - | - | - | - |
| 0.0072 | 200 | 0.0559 | - | - | - | - | - | - | - |
| 0.0108 | 300 | 0.0518 | - | - | - | - | - | - | - |
| 0.0144 | 400 | 0.051 | - | - | - | - | - | - | - |
| 0.0181 | 500 | 0.0492 | 0.6421 | 0.3808 | 0.7993 | 0.5565 | 0.5826 | 0.3050 | 0.5444 |
| 0.0217 | 600 | 0.0467 | - | - | - | - | - | - | - |
| 0.0253 | 700 | 0.0451 | - | - | - | - | - | - | - |
| 0.0289 | 800 | 0.0443 | - | - | - | - | - | - | - |
| 0.0325 | 900 | 0.0443 | - | - | - | - | - | - | - |
| 0.0361 | 1000 | 0.0437 | 0.6449 | 0.4015 | 0.8003 | 0.5437 | 0.6092 | 0.3134 | 0.5522 |
| 0.0397 | 1100 | 0.0433 | - | - | - | - | - | - | - |
| 0.0433 | 1200 | 0.0427 | - | - | - | - | - | - | - |
| 0.0469 | 1300 | 0.0414 | - | - | - | - | - | - | - |
| 0.0505 | 1400 | 0.0417 | - | - | - | - | - | - | - |
| 0.0542 | 1500 | 0.0418 | 0.6412 | 0.4285 | 0.8154 | 0.5866 | 0.6181 | 0.3219 | 0.5686 |
| 0.0578 | 1600 | 0.0404 | - | - | - | - | - | - | - |
| 0.0614 | 1700 | 0.0417 | - | - | - | - | - | - | - |
| 0.0650 | 1800 | 0.0407 | - | - | - | - | - | - | - |
| 0.0686 | 1900 | 0.0398 | - | - | - | - | - | - | - |
| 0.0722 | 2000 | 0.0401 | 0.6499 | 0.4354 | 0.8150 | 0.5610 | 0.6445 | 0.3152 | 0.5702 |
| 0.0758 | 2100 | 0.0404 | - | - | - | - | - | - | - |
| 0.0794 | 2200 | 0.0395 | - | - | - | - | - | - | - |
| 0.0830 | 2300 | 0.0404 | - | - | - | - | - | - | - |
| 0.0867 | 2400 | 0.0393 | - | - | - | - | - | - | - |
| 0.0903 | 2500 | 0.0387 | 0.6571 | 0.4435 | 0.8112 | 0.5786 | 0.6809 | 0.3232 | 0.5824 |
| 0.0939 | 2600 | 0.0397 | - | - | - | - | - | - | - |
| 0.0975 | 2700 | 0.0393 | - | - | - | - | - | - | - |
| 0.1011 | 2800 | 0.0384 | - | - | - | - | - | - | - |
| 0.1047 | 2900 | 0.0382 | - | - | - | - | - | - | - |
| 0.1083 | 3000 | 0.0381 | 0.6437 | 0.4751 | 0.8175 | 0.5711 | 0.6422 | 0.3203 | 0.5783 |
| 0.1119 | 3100 | 0.0382 | - | - | - | - | - | - | - |
| 0.1155 | 3200 | 0.0381 | - | - | - | - | - | - | - |
| 0.1191 | 3300 | 0.0385 | - | - | - | - | - | - | - |
| 0.1228 | 3400 | 0.0374 | - | - | - | - | - | - | - |
| 0.1264 | 3500 | 0.0382 | 0.6437 | 0.4833 | 0.8282 | 0.5955 | 0.6436 | 0.3190 | 0.5856 |
| 0.1300 | 3600 | 0.0365 | - | - | - | - | - | - | - |
| 0.1336 | 3700 | 0.0379 | - | - | - | - | - | - | - |
| 0.1372 | 3800 | 0.0376 | - | - | - | - | - | - | - |
| 0.1408 | 3900 | 0.0376 | - | - | - | - | - | - | - |
| 0.1444 | 4000 | 0.0378 | 0.6511 | 0.4760 | 0.8151 | 0.5806 | 0.6874 | 0.3140 | 0.5874 |
| 0.1480 | 4100 | 0.0365 | - | - | - | - | - | - | - |
| 0.1516 | 4200 | 0.0362 | - | - | - | - | - | - | - |
| 0.1553 | 4300 | 0.0374 | - | - | - | - | - | - | - |
| 0.1589 | 4400 | 0.0359 | - | - | - | - | - | - | - |
| 0.1625 | 4500 | 0.0368 | 0.6530 | 0.4458 | 0.8122 | 0.6101 | 0.6896 | 0.3174 | 0.5880 |
| 0.1661 | 4600 | 0.0356 | - | - | - | - | - | - | - |
| 0.1697 | 4700 | 0.0364 | - | - | - | - | - | - | - |
| 0.1733 | 4800 | 0.0352 | - | - | - | - | - | - | - |
| 0.1769 | 4900 | 0.0357 | - | - | - | - | - | - | - |
| 0.1805 | 5000 | 0.0366 | 0.6611 | 0.4680 | 0.8152 | 0.6260 | 0.6715 | 0.3252 | 0.5945 |
| 0.1841 | 5100 | 0.0358 | - | - | - | - | - | - | - |
| 0.1877 | 5200 | 0.0366 | - | - | - | - | - | - | - |
| 0.1914 | 5300 | 0.0348 | - | - | - | - | - | - | - |
| 0.1950 | 5400 | 0.036 | - | - | - | - | - | - | - |
| 0.1986 | 5500 | 0.0337 | 0.6595 | 0.4823 | 0.8162 | 0.6241 | 0.6620 | 0.3216 | 0.5943 |
| 0.2022 | 5600 | 0.0347 | - | - | - | - | - | - | - |
| 0.2058 | 5700 | 0.0361 | - | - | - | - | - | - | - |
| 0.2094 | 5800 | 0.0356 | - | - | - | - | - | - | - |
| 0.2130 | 5900 | 0.0359 | - | - | - | - | - | - | - |
| 0.2166 | 6000 | 0.0359 | 0.6560 | 0.4820 | 0.8121 | 0.6457 | 0.6587 | 0.3181 | 0.5954 |
| 0.2202 | 6100 | 0.0347 | - | - | - | - | - | - | - |
| 0.2239 | 6200 | 0.0355 | - | - | - | - | - | - | - |
| 0.2275 | 6300 | 0.0356 | - | - | - | - | - | - | - |
| 0.2311 | 6400 | 0.0351 | - | - | - | - | - | - | - |
| 0.2347 | 6500 | 0.0351 | 0.6650 | 0.4658 | 0.8291 | 0.6167 | 0.6742 | 0.3146 | 0.5942 |
| 0.2383 | 6600 | 0.0361 | - | - | - | - | - | - | - |
| 0.2419 | 6700 | 0.0352 | - | - | - | - | - | - | - |
| 0.2455 | 6800 | 0.0358 | - | - | - | - | - | - | - |
| 0.2491 | 6900 | 0.0339 | - | - | - | - | - | - | - |
| 0.2527 | 7000 | 0.0345 | 0.6600 | 0.4700 | 0.8413 | 0.6449 | 0.6862 | 0.3163 | 0.6031 |
| 0.2563 | 7100 | 0.0347 | - | - | - | - | - | - | - |
| 0.2600 | 7200 | 0.0346 | - | - | - | - | - | - | - |
| 0.2636 | 7300 | 0.0342 | - | - | - | - | - | - | - |
| 0.2672 | 7400 | 0.0346 | - | - | - | - | - | - | - |
| 0.2708 | 7500 | 0.0339 | 0.6583 | 0.4792 | 0.8295 | 0.6257 | 0.6788 | 0.3204 | 0.5986 |
| 0.2744 | 7600 | 0.0344 | - | - | - | - | - | - | - |
| 0.2780 | 7700 | 0.0323 | - | - | - | - | - | - | - |
| 0.2816 | 7800 | 0.0333 | - | - | - | - | - | - | - |
| 0.2852 | 7900 | 0.0334 | - | - | - | - | - | - | - |
| 0.2888 | 8000 | 0.0333 | 0.6633 | 0.4660 | 0.8257 | 0.6251 | 0.6847 | 0.3229 | 0.5979 |
| 0.2925 | 8100 | 0.0337 | - | - | - | - | - | - | - |
| 0.2961 | 8200 | 0.0339 | - | - | - | - | - | - | - |
| 0.2997 | 8300 | 0.0332 | - | - | - | - | - | - | - |
| 0.3033 | 8400 | 0.0334 | - | - | - | - | - | - | - |
| 0.3069 | 8500 | 0.0334 | 0.6744 | 0.4791 | 0.8204 | 0.6139 | 0.6654 | 0.3130 | 0.5944 |
| 0.3105 | 8600 | 0.032 | - | - | - | - | - | - | - |
| 0.3141 | 8700 | 0.0342 | - | - | - | - | - | - | - |
| 0.3177 | 8800 | 0.0337 | - | - | - | - | - | - | - |
| 0.3213 | 8900 | 0.0343 | - | - | - | - | - | - | - |
| 0.3249 | 9000 | 0.0342 | 0.6643 | 0.4395 | 0.8270 | 0.6252 | 0.6828 | 0.3146 | 0.5922 |
| 0.3286 | 9100 | 0.0332 | - | - | - | - | - | - | - |
| 0.3322 | 9200 | 0.0337 | - | - | - | - | - | - | - |
| 0.3358 | 9300 | 0.033 | - | - | - | - | - | - | - |
| 0.3394 | 9400 | 0.0327 | - | - | - | - | - | - | - |
| 0.3430 | 9500 | 0.0332 | 0.6676 | 0.4530 | 0.8400 | 0.6220 | 0.6753 | 0.3139 | 0.5953 |
| 0.3466 | 9600 | 0.0315 | - | - | - | - | - | - | - |
| 0.3502 | 9700 | 0.033 | - | - | - | - | - | - | - |
| 0.3538 | 9800 | 0.0331 | - | - | - | - | - | - | - |
| 0.3574 | 9900 | 0.0341 | - | - | - | - | - | - | - |
| 0.3610 | 10000 | 0.0327 | 0.6602 | 0.4887 | 0.8308 | 0.6267 | 0.6806 | 0.3241 | 0.6018 |
| 0.3647 | 10100 | 0.0338 | - | - | - | - | - | - | - |
| 0.3683 | 10200 | 0.0327 | - | - | - | - | - | - | - |
| 0.3719 | 10300 | 0.0325 | - | - | - | - | - | - | - |
| 0.3755 | 10400 | 0.0342 | - | - | - | - | - | - | - |
| 0.3791 | 10500 | 0.034 | 0.6659 | 0.4723 | 0.8313 | 0.6156 | 0.6803 | 0.3240 | 0.5982 |
| 0.3827 | 10600 | 0.0323 | - | - | - | - | - | - | - |
| 0.3863 | 10700 | 0.0329 | - | - | - | - | - | - | - |
| 0.3899 | 10800 | 0.0328 | - | - | - | - | - | - | - |
| 0.3935 | 10900 | 0.0324 | - | - | - | - | - | - | - |
| 0.3972 | 11000 | 0.0321 | 0.6628 | 0.4937 | 0.8340 | 0.6373 | 0.6945 | 0.3268 | 0.6082 |
| 0.4008 | 11100 | 0.0329 | - | - | - | - | - | - | - |
| 0.4044 | 11200 | 0.0329 | - | - | - | - | - | - | - |
| 0.4080 | 11300 | 0.0325 | - | - | - | - | - | - | - |
| 0.4116 | 11400 | 0.0321 | - | - | - | - | - | - | - |
| 0.4152 | 11500 | 0.0325 | 0.6617 | 0.4698 | 0.8419 | 0.6231 | 0.6853 | 0.3191 | 0.6002 |
| 0.4188 | 11600 | 0.0327 | - | - | - | - | - | - | - |
| 0.4224 | 11700 | 0.0327 | - | - | - | - | - | - | - |
| 0.4260 | 11800 | 0.0326 | - | - | - | - | - | - | - |
| 0.4296 | 11900 | 0.0329 | - | - | - | - | - | - | - |
| 0.4333 | 12000 | 0.0332 | 0.6559 | 0.4860 | 0.8324 | 0.6160 | 0.6966 | 0.3219 | 0.6015 |
| 0.4369 | 12100 | 0.0323 | - | - | - | - | - | - | - |
| 0.4405 | 12200 | 0.0327 | - | - | - | - | - | - | - |
| 0.4441 | 12300 | 0.0321 | - | - | - | - | - | - | - |
| 0.4477 | 12400 | 0.0321 | - | - | - | - | - | - | - |
| 0.4513 | 12500 | 0.0319 | 0.6630 | 0.4877 | 0.8310 | 0.6197 | 0.6943 | 0.3296 | 0.6042 |
| 0.4549 | 12600 | 0.0326 | - | - | - | - | - | - | - |
| 0.4585 | 12700 | 0.032 | - | - | - | - | - | - | - |
| 0.4621 | 12800 | 0.032 | - | - | - | - | - | - | - |
| 0.4658 | 12900 | 0.0302 | - | - | - | - | - | - | - |
| 0.4694 | 13000 | 0.0311 | 0.6687 | 0.4726 | 0.8305 | 0.6191 | 0.6929 | 0.3233 | 0.6012 |
| 0.4730 | 13100 | 0.0321 | - | - | - | - | - | - | - |
| 0.4766 | 13200 | 0.0318 | - | - | - | - | - | - | - |
| 0.4802 | 13300 | 0.032 | - | - | - | - | - | - | - |
| 0.4838 | 13400 | 0.0315 | - | - | - | - | - | - | - |
| 0.4874 | 13500 | 0.0317 | 0.6628 | 0.4781 | 0.8257 | 0.6153 | 0.6795 | 0.3172 | 0.5964 |
| 0.4910 | 13600 | 0.0316 | - | - | - | - | - | - | - |
| 0.4946 | 13700 | 0.0335 | - | - | - | - | - | - | - |
| 0.4982 | 13800 | 0.0313 | - | - | - | - | - | - | - |
| 0.5019 | 13900 | 0.0317 | - | - | - | - | - | - | - |
| 0.5055 | 14000 | 0.0321 | 0.6579 | 0.4676 | 0.8351 | 0.6088 | 0.6774 | 0.3211 | 0.5946 |
| 0.5091 | 14100 | 0.0318 | - | - | - | - | - | - | - |
| 0.5127 | 14200 | 0.0328 | - | - | - | - | - | - | - |
| 0.5163 | 14300 | 0.0307 | - | - | - | - | - | - | - |
| 0.5199 | 14400 | 0.0326 | - | - | - | - | - | - | - |
| 0.5235 | 14500 | 0.0322 | 0.6558 | 0.5042 | 0.8344 | 0.6093 | 0.6963 | 0.3244 | 0.6041 |
| 0.5271 | 14600 | 0.0321 | - | - | - | - | - | - | - |
| 0.5307 | 14700 | 0.0308 | - | - | - | - | - | - | - |
| 0.5344 | 14800 | 0.0315 | - | - | - | - | - | - | - |
| 0.5380 | 14900 | 0.0324 | - | - | - | - | - | - | - |
| 0.5416 | 15000 | 0.0305 | 0.6598 | 0.4898 | 0.8402 | 0.6081 | 0.6945 | 0.3207 | 0.6022 |
| 0.5452 | 15100 | 0.0324 | - | - | - | - | - | - | - |
| 0.5488 | 15200 | 0.0315 | - | - | - | - | - | - | - |
| 0.5524 | 15300 | 0.0311 | - | - | - | - | - | - | - |
| 0.5560 | 15400 | 0.0317 | - | - | - | - | - | - | - |
| 0.5596 | 15500 | 0.0309 | 0.6541 | 0.4770 | 0.8309 | 0.6234 | 0.6946 | 0.3282 | 0.6014 |
| 0.5632 | 15600 | 0.0322 | - | - | - | - | - | - | - |
| 0.5668 | 15700 | 0.0314 | - | - | - | - | - | - | - |
| 0.5705 | 15800 | 0.0312 | - | - | - | - | - | - | - |
| 0.5741 | 15900 | 0.0301 | - | - | - | - | - | - | - |
| 0.5777 | 16000 | 0.0316 | 0.6699 | 0.4869 | 0.8348 | 0.6061 | 0.7020 | 0.3182 | 0.6030 |
| 0.5813 | 16100 | 0.0309 | - | - | - | - | - | - | - |
| 0.5849 | 16200 | 0.0297 | - | - | - | - | - | - | - |
| 0.5885 | 16300 | 0.0319 | - | - | - | - | - | - | - |
| 0.5921 | 16400 | 0.0305 | - | - | - | - | - | - | - |
| 0.5957 | 16500 | 0.0309 | 0.6725 | 0.4863 | 0.8270 | 0.6131 | 0.6957 | 0.3254 | 0.6033 |
| 0.5993 | 16600 | 0.0312 | - | - | - | - | - | - | - |
| 0.6030 | 16700 | 0.0305 | - | - | - | - | - | - | - |
| 0.6066 | 16800 | 0.0306 | - | - | - | - | - | - | - |
| 0.6102 | 16900 | 0.0314 | - | - | - | - | - | - | - |
| 0.6138 | 17000 | 0.0308 | 0.6720 | 0.4886 | 0.8269 | 0.6115 | 0.6809 | 0.3239 | 0.6006 |
| 0.6174 | 17100 | 0.0307 | - | - | - | - | - | - | - |
| 0.6210 | 17200 | 0.03 | - | - | - | - | - | - | - |
| 0.6246 | 17300 | 0.0315 | - | - | - | - | - | - | - |
| 0.6282 | 17400 | 0.0304 | - | - | - | - | - | - | - |
| 0.6318 | 17500 | 0.0313 | 0.6646 | 0.4817 | 0.8216 | 0.6176 | 0.6967 | 0.3257 | 0.6013 |
| 0.6354 | 17600 | 0.03 | - | - | - | - | - | - | - |
| 0.6391 | 17700 | 0.0323 | - | - | - | - | - | - | - |
| 0.6427 | 17800 | 0.0311 | - | - | - | - | - | - | - |
| 0.6463 | 17900 | 0.0295 | - | - | - | - | - | - | - |
| 0.6499 | 18000 | 0.0307 | 0.6726 | 0.4799 | 0.8249 | 0.6299 | 0.6865 | 0.3242 | 0.6030 |
</details>
### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.0.2
- PyLate: 1.2.0
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
```
#### PyLate
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |