PyLate model based on artiwise-ai/modernbert-base-tr-uncased

This is a PyLate model finetuned from artiwise-ai/modernbert-base-tr-uncased on the train dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

  • Model Type: PyLate model
  • Base model: artiwise-ai/modernbert-base-tr-uncased
  • Document Length: 180 tokens
  • Query Length: 32 tokens
  • Output Dimensionality: 128 tokens
  • Similarity Function: MaxSim
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Metrics

Py Late Information Retrieval

  • Dataset: ['NanoDBPedia', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNQ', 'NanoSCIDOCS']
  • Evaluated with pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
Metric NanoDBPedia NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNQ NanoSCIDOCS
MaxSim_accuracy@1 0.76 0.44 0.92 0.42 0.56 0.42
MaxSim_accuracy@3 0.92 0.68 1.0 0.58 0.7 0.6
MaxSim_accuracy@5 0.96 0.72 1.0 0.68 0.76 0.66
MaxSim_accuracy@10 1.0 0.72 1.0 0.8 0.84 0.78
MaxSim_precision@1 0.76 0.44 0.92 0.42 0.56 0.42
MaxSim_precision@3 0.6933 0.3 0.5267 0.1933 0.24 0.2733
MaxSim_precision@5 0.604 0.22 0.332 0.136 0.156 0.236
MaxSim_precision@10 0.55 0.13 0.17 0.08 0.09 0.156
MaxSim_recall@1 0.079 0.2126 0.46 0.42 0.55 0.0887
MaxSim_recall@3 0.1974 0.4491 0.79 0.58 0.69 0.1697
MaxSim_recall@5 0.2585 0.5106 0.83 0.68 0.73 0.2427
MaxSim_recall@10 0.3954 0.5572 0.85 0.8 0.81 0.3197
MaxSim_ndcg@10 0.6715 0.4732 0.8394 0.5991 0.6854 0.3223
MaxSim_mrr@10 0.8505 0.5513 0.96 0.5361 0.6499 0.5363
MaxSim_map@100 0.523 0.3998 0.7843 0.5431 0.6459 0.2451

Pylate Custom Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with pylate_nano_beir_evaluator.PylateCustomNanoBEIREvaluator
Metric Value
MaxSim_accuracy@1 0.5867
MaxSim_accuracy@3 0.7467
MaxSim_accuracy@5 0.7967
MaxSim_accuracy@10 0.8567
MaxSim_precision@1 0.5867
MaxSim_precision@3 0.3711
MaxSim_precision@5 0.2807
MaxSim_precision@10 0.196
MaxSim_recall@1 0.3017
MaxSim_recall@3 0.4793
MaxSim_recall@5 0.542
MaxSim_recall@10 0.622
MaxSim_ndcg@10 0.5985
MaxSim_mrr@10 0.6807
MaxSim_map@100 0.5235

Training Details

Training Dataset

train

  • Dataset: train at bd034f5
  • Size: 443,147 training samples
  • Columns: query_id, document_ids, and scores
  • Approximate statistics based on the first 1000 samples:
    query_id document_ids scores
    type string list list
    details
    • min: 5 tokens
    • mean: 6.21 tokens
    • max: 8 tokens
    • size: 32 elements
    • size: 32 elements
  • Samples:
    query_id document_ids scores
    817836 ['2716076', '6741935', '2681109', '5562684', '3507339', ...] [1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]
    1045170 ['5088671', '2953295', '8783471', '4268439', '6339935', ...] [1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]
    1069432 ['3724008', '314949', '8657336', '7420456', '879004', ...] [1.0, 0.3706032931804657, 0.3508036434650421, 0.2823200523853302, 0.17563475668430328, ...]
  • Loss: pylate.losses.distillation.Distillation

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • gradient_accumulation_steps: 2
  • learning_rate: 3e-05
  • num_train_epochs: 1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss NanoDBPedia_MaxSim_ndcg@10 NanoFiQA2018_MaxSim_ndcg@10 NanoHotpotQA_MaxSim_ndcg@10 NanoMSMARCO_MaxSim_ndcg@10 NanoNQ_MaxSim_ndcg@10 NanoSCIDOCS_MaxSim_ndcg@10 NanoBEIR_mean_MaxSim_ndcg@10
0.0036 100 0.0649 - - - - - - -
0.0072 200 0.0559 - - - - - - -
0.0108 300 0.0518 - - - - - - -
0.0144 400 0.051 - - - - - - -
0.0181 500 0.0492 0.6421 0.3808 0.7993 0.5565 0.5826 0.3050 0.5444
0.0217 600 0.0467 - - - - - - -
0.0253 700 0.0451 - - - - - - -
0.0289 800 0.0443 - - - - - - -
0.0325 900 0.0443 - - - - - - -
0.0361 1000 0.0437 0.6449 0.4015 0.8003 0.5437 0.6092 0.3134 0.5522
0.0397 1100 0.0433 - - - - - - -
0.0433 1200 0.0427 - - - - - - -
0.0469 1300 0.0414 - - - - - - -
0.0505 1400 0.0417 - - - - - - -
0.0542 1500 0.0418 0.6412 0.4285 0.8154 0.5866 0.6181 0.3219 0.5686
0.0578 1600 0.0404 - - - - - - -
0.0614 1700 0.0417 - - - - - - -
0.0650 1800 0.0407 - - - - - - -
0.0686 1900 0.0398 - - - - - - -
0.0722 2000 0.0401 0.6499 0.4354 0.8150 0.5610 0.6445 0.3152 0.5702
0.0758 2100 0.0404 - - - - - - -
0.0794 2200 0.0395 - - - - - - -
0.0830 2300 0.0404 - - - - - - -
0.0867 2400 0.0393 - - - - - - -
0.0903 2500 0.0387 0.6571 0.4435 0.8112 0.5786 0.6809 0.3232 0.5824
0.0939 2600 0.0397 - - - - - - -
0.0975 2700 0.0393 - - - - - - -
0.1011 2800 0.0384 - - - - - - -
0.1047 2900 0.0382 - - - - - - -
0.1083 3000 0.0381 0.6437 0.4751 0.8175 0.5711 0.6422 0.3203 0.5783
0.1119 3100 0.0382 - - - - - - -
0.1155 3200 0.0381 - - - - - - -
0.1191 3300 0.0385 - - - - - - -
0.1228 3400 0.0374 - - - - - - -
0.1264 3500 0.0382 0.6437 0.4833 0.8282 0.5955 0.6436 0.3190 0.5856
0.1300 3600 0.0365 - - - - - - -
0.1336 3700 0.0379 - - - - - - -
0.1372 3800 0.0376 - - - - - - -
0.1408 3900 0.0376 - - - - - - -
0.1444 4000 0.0378 0.6511 0.4760 0.8151 0.5806 0.6874 0.3140 0.5874
0.1480 4100 0.0365 - - - - - - -
0.1516 4200 0.0362 - - - - - - -
0.1553 4300 0.0374 - - - - - - -
0.1589 4400 0.0359 - - - - - - -
0.1625 4500 0.0368 0.6530 0.4458 0.8122 0.6101 0.6896 0.3174 0.5880
0.1661 4600 0.0356 - - - - - - -
0.1697 4700 0.0364 - - - - - - -
0.1733 4800 0.0352 - - - - - - -
0.1769 4900 0.0357 - - - - - - -
0.1805 5000 0.0366 0.6611 0.4680 0.8152 0.6260 0.6715 0.3252 0.5945
0.1841 5100 0.0358 - - - - - - -
0.1877 5200 0.0366 - - - - - - -
0.1914 5300 0.0348 - - - - - - -
0.1950 5400 0.036 - - - - - - -
0.1986 5500 0.0337 0.6595 0.4823 0.8162 0.6241 0.6620 0.3216 0.5943
0.2022 5600 0.0347 - - - - - - -
0.2058 5700 0.0361 - - - - - - -
0.2094 5800 0.0356 - - - - - - -
0.2130 5900 0.0359 - - - - - - -
0.2166 6000 0.0359 0.6560 0.4820 0.8121 0.6457 0.6587 0.3181 0.5954
0.2202 6100 0.0347 - - - - - - -
0.2239 6200 0.0355 - - - - - - -
0.2275 6300 0.0356 - - - - - - -
0.2311 6400 0.0351 - - - - - - -
0.2347 6500 0.0351 0.6650 0.4658 0.8291 0.6167 0.6742 0.3146 0.5942
0.2383 6600 0.0361 - - - - - - -
0.2419 6700 0.0352 - - - - - - -
0.2455 6800 0.0358 - - - - - - -
0.2491 6900 0.0339 - - - - - - -
0.2527 7000 0.0345 0.6600 0.4700 0.8413 0.6449 0.6862 0.3163 0.6031
0.2563 7100 0.0347 - - - - - - -
0.2600 7200 0.0346 - - - - - - -
0.2636 7300 0.0342 - - - - - - -
0.2672 7400 0.0346 - - - - - - -
0.2708 7500 0.0339 0.6583 0.4792 0.8295 0.6257 0.6788 0.3204 0.5986
0.2744 7600 0.0344 - - - - - - -
0.2780 7700 0.0323 - - - - - - -
0.2816 7800 0.0333 - - - - - - -
0.2852 7900 0.0334 - - - - - - -
0.2888 8000 0.0333 0.6633 0.4660 0.8257 0.6251 0.6847 0.3229 0.5979
0.2925 8100 0.0337 - - - - - - -
0.2961 8200 0.0339 - - - - - - -
0.2997 8300 0.0332 - - - - - - -
0.3033 8400 0.0334 - - - - - - -
0.3069 8500 0.0334 0.6744 0.4791 0.8204 0.6139 0.6654 0.3130 0.5944
0.3105 8600 0.032 - - - - - - -
0.3141 8700 0.0342 - - - - - - -
0.3177 8800 0.0337 - - - - - - -
0.3213 8900 0.0343 - - - - - - -
0.3249 9000 0.0342 0.6643 0.4395 0.8270 0.6252 0.6828 0.3146 0.5922
0.3286 9100 0.0332 - - - - - - -
0.3322 9200 0.0337 - - - - - - -
0.3358 9300 0.033 - - - - - - -
0.3394 9400 0.0327 - - - - - - -
0.3430 9500 0.0332 0.6676 0.4530 0.8400 0.6220 0.6753 0.3139 0.5953
0.3466 9600 0.0315 - - - - - - -
0.3502 9700 0.033 - - - - - - -
0.3538 9800 0.0331 - - - - - - -
0.3574 9900 0.0341 - - - - - - -
0.3610 10000 0.0327 0.6602 0.4887 0.8308 0.6267 0.6806 0.3241 0.6018
0.3647 10100 0.0338 - - - - - - -
0.3683 10200 0.0327 - - - - - - -
0.3719 10300 0.0325 - - - - - - -
0.3755 10400 0.0342 - - - - - - -
0.3791 10500 0.034 0.6659 0.4723 0.8313 0.6156 0.6803 0.3240 0.5982
0.3827 10600 0.0323 - - - - - - -
0.3863 10700 0.0329 - - - - - - -
0.3899 10800 0.0328 - - - - - - -
0.3935 10900 0.0324 - - - - - - -
0.3972 11000 0.0321 0.6628 0.4937 0.8340 0.6373 0.6945 0.3268 0.6082
0.4008 11100 0.0329 - - - - - - -
0.4044 11200 0.0329 - - - - - - -
0.4080 11300 0.0325 - - - - - - -
0.4116 11400 0.0321 - - - - - - -
0.4152 11500 0.0325 0.6617 0.4698 0.8419 0.6231 0.6853 0.3191 0.6002
0.4188 11600 0.0327 - - - - - - -
0.4224 11700 0.0327 - - - - - - -
0.4260 11800 0.0326 - - - - - - -
0.4296 11900 0.0329 - - - - - - -
0.4333 12000 0.0332 0.6559 0.4860 0.8324 0.6160 0.6966 0.3219 0.6015
0.4369 12100 0.0323 - - - - - - -
0.4405 12200 0.0327 - - - - - - -
0.4441 12300 0.0321 - - - - - - -
0.4477 12400 0.0321 - - - - - - -
0.4513 12500 0.0319 0.6630 0.4877 0.8310 0.6197 0.6943 0.3296 0.6042
0.4549 12600 0.0326 - - - - - - -
0.4585 12700 0.032 - - - - - - -
0.4621 12800 0.032 - - - - - - -
0.4658 12900 0.0302 - - - - - - -
0.4694 13000 0.0311 0.6687 0.4726 0.8305 0.6191 0.6929 0.3233 0.6012
0.4730 13100 0.0321 - - - - - - -
0.4766 13200 0.0318 - - - - - - -
0.4802 13300 0.032 - - - - - - -
0.4838 13400 0.0315 - - - - - - -
0.4874 13500 0.0317 0.6628 0.4781 0.8257 0.6153 0.6795 0.3172 0.5964
0.4910 13600 0.0316 - - - - - - -
0.4946 13700 0.0335 - - - - - - -
0.4982 13800 0.0313 - - - - - - -
0.5019 13900 0.0317 - - - - - - -
0.5055 14000 0.0321 0.6579 0.4676 0.8351 0.6088 0.6774 0.3211 0.5946
0.5091 14100 0.0318 - - - - - - -
0.5127 14200 0.0328 - - - - - - -
0.5163 14300 0.0307 - - - - - - -
0.5199 14400 0.0326 - - - - - - -
0.5235 14500 0.0322 0.6558 0.5042 0.8344 0.6093 0.6963 0.3244 0.6041
0.5271 14600 0.0321 - - - - - - -
0.5307 14700 0.0308 - - - - - - -
0.5344 14800 0.0315 - - - - - - -
0.5380 14900 0.0324 - - - - - - -
0.5416 15000 0.0305 0.6598 0.4898 0.8402 0.6081 0.6945 0.3207 0.6022
0.5452 15100 0.0324 - - - - - - -
0.5488 15200 0.0315 - - - - - - -
0.5524 15300 0.0311 - - - - - - -
0.5560 15400 0.0317 - - - - - - -
0.5596 15500 0.0309 0.6541 0.4770 0.8309 0.6234 0.6946 0.3282 0.6014
0.5632 15600 0.0322 - - - - - - -
0.5668 15700 0.0314 - - - - - - -
0.5705 15800 0.0312 - - - - - - -
0.5741 15900 0.0301 - - - - - - -
0.5777 16000 0.0316 0.6699 0.4869 0.8348 0.6061 0.7020 0.3182 0.6030
0.5813 16100 0.0309 - - - - - - -
0.5849 16200 0.0297 - - - - - - -
0.5885 16300 0.0319 - - - - - - -
0.5921 16400 0.0305 - - - - - - -
0.5957 16500 0.0309 0.6725 0.4863 0.8270 0.6131 0.6957 0.3254 0.6033
0.5993 16600 0.0312 - - - - - - -
0.6030 16700 0.0305 - - - - - - -
0.6066 16800 0.0306 - - - - - - -
0.6102 16900 0.0314 - - - - - - -
0.6138 17000 0.0308 0.6720 0.4886 0.8269 0.6115 0.6809 0.3239 0.6006
0.6174 17100 0.0307 - - - - - - -
0.6210 17200 0.03 - - - - - - -
0.6246 17300 0.0315 - - - - - - -
0.6282 17400 0.0304 - - - - - - -
0.6318 17500 0.0313 0.6646 0.4817 0.8216 0.6176 0.6967 0.3257 0.6013
0.6354 17600 0.03 - - - - - - -
0.6391 17700 0.0323 - - - - - - -
0.6427 17800 0.0311 - - - - - - -
0.6463 17900 0.0295 - - - - - - -
0.6499 18000 0.0307 0.6726 0.4799 0.8249 0.6299 0.6865 0.3242 0.6030
0.6535 18100 0.0313 - - - - - - -
0.6571 18200 0.0299 - - - - - - -
0.6607 18300 0.0303 - - - - - - -
0.6643 18400 0.03 - - - - - - -
0.6679 18500 0.0298 0.6694 0.4799 0.8340 0.6031 0.6919 0.3236 0.6003
0.6716 18600 0.0311 - - - - - - -
0.6752 18700 0.0297 - - - - - - -
0.6788 18800 0.0309 - - - - - - -
0.6824 18900 0.0302 - - - - - - -
0.6860 19000 0.0305 0.6603 0.4589 0.8387 0.6096 0.6982 0.3252 0.5985
0.6896 19100 0.0293 - - - - - - -
0.6932 19200 0.0308 - - - - - - -
0.6968 19300 0.03 - - - - - - -
0.7004 19400 0.0293 - - - - - - -
0.7040 19500 0.0298 0.6715 0.4732 0.8394 0.5991 0.6854 0.3223 0.5985

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.0.2
  • PyLate: 1.2.0
  • Transformers: 4.48.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}

PyLate

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
Downloads last month
22
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Speedsy/modernbert-base-tr-uncased-colbert-19500

Finetuned
(42)
this model

Evaluation results