PyLate model based on artiwise-ai/modernbert-base-tr-uncased

This is a PyLate model finetuned from artiwise-ai/modernbert-base-tr-uncased on the train dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

  • Model Type: PyLate model
  • Base model: artiwise-ai/modernbert-base-tr-uncased
  • Document Length: 180 tokens
  • Query Length: 32 tokens
  • Output Dimensionality: 128 tokens
  • Similarity Function: MaxSim
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Metrics

Py Late Information Retrieval

  • Dataset: ['NanoDBPedia', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNQ', 'NanoSCIDOCS']
  • Evaluated with pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
Metric NanoDBPedia NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNQ NanoSCIDOCS
MaxSim_accuracy@1 0.8 0.5 0.9 0.48 0.5 0.42
MaxSim_accuracy@3 0.9 0.66 0.98 0.62 0.68 0.6
MaxSim_accuracy@5 0.92 0.68 1.0 0.66 0.78 0.68
MaxSim_accuracy@10 0.98 0.74 1.0 0.86 0.84 0.76
MaxSim_precision@1 0.8 0.5 0.9 0.48 0.5 0.42
MaxSim_precision@3 0.6533 0.2933 0.5 0.2067 0.2333 0.2867
MaxSim_precision@5 0.608 0.216 0.324 0.132 0.16 0.236
MaxSim_precision@10 0.534 0.124 0.168 0.086 0.09 0.152
MaxSim_recall@1 0.0857 0.2759 0.45 0.48 0.49 0.0887
MaxSim_recall@3 0.177 0.4291 0.75 0.62 0.67 0.1777
MaxSim_recall@5 0.2344 0.484 0.81 0.66 0.74 0.2437
MaxSim_recall@10 0.3716 0.5324 0.84 0.86 0.8 0.3117
MaxSim_ndcg@10 0.656 0.482 0.8121 0.6457 0.6587 0.3181
MaxSim_mrr@10 0.8562 0.5794 0.9383 0.5813 0.6164 0.5282
MaxSim_map@100 0.5105 0.4227 0.7456 0.5848 0.612 0.2444

Pylate Custom Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with pylate_nano_beir_evaluator.PylateCustomNanoBEIREvaluator
Metric Value
MaxSim_accuracy@1 0.6
MaxSim_accuracy@3 0.74
MaxSim_accuracy@5 0.7867
MaxSim_accuracy@10 0.8633
MaxSim_precision@1 0.6
MaxSim_precision@3 0.3622
MaxSim_precision@5 0.2793
MaxSim_precision@10 0.1923
MaxSim_recall@1 0.3117
MaxSim_recall@3 0.4706
MaxSim_recall@5 0.5287
MaxSim_recall@10 0.6193
MaxSim_ndcg@10 0.5954
MaxSim_mrr@10 0.6833
MaxSim_map@100 0.52

Training Details

Training Dataset

train

  • Dataset: train at bd034f5
  • Size: 443,147 training samples
  • Columns: query_id, document_ids, and scores
  • Approximate statistics based on the first 1000 samples:
    query_id document_ids scores
    type string list list
    details
    • min: 5 tokens
    • mean: 6.21 tokens
    • max: 8 tokens
    • size: 32 elements
    • size: 32 elements
  • Samples:
    query_id document_ids scores
    817836 ['2716076', '6741935', '2681109', '5562684', '3507339', ...] [1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]
    1045170 ['5088671', '2953295', '8783471', '4268439', '6339935', ...] [1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]
    1069432 ['3724008', '314949', '8657336', '7420456', '879004', ...] [1.0, 0.3706032931804657, 0.3508036434650421, 0.2823200523853302, 0.17563475668430328, ...]
  • Loss: pylate.losses.distillation.Distillation

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • gradient_accumulation_steps: 2
  • learning_rate: 3e-05
  • num_train_epochs: 1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss NanoDBPedia_MaxSim_ndcg@10 NanoFiQA2018_MaxSim_ndcg@10 NanoHotpotQA_MaxSim_ndcg@10 NanoMSMARCO_MaxSim_ndcg@10 NanoNQ_MaxSim_ndcg@10 NanoSCIDOCS_MaxSim_ndcg@10 NanoBEIR_mean_MaxSim_ndcg@10
0.0036 100 0.0649 - - - - - - -
0.0072 200 0.0559 - - - - - - -
0.0108 300 0.0518 - - - - - - -
0.0144 400 0.051 - - - - - - -
0.0181 500 0.0492 0.6421 0.3808 0.7993 0.5565 0.5826 0.3050 0.5444
0.0217 600 0.0467 - - - - - - -
0.0253 700 0.0451 - - - - - - -
0.0289 800 0.0443 - - - - - - -
0.0325 900 0.0443 - - - - - - -
0.0361 1000 0.0437 0.6449 0.4015 0.8003 0.5437 0.6092 0.3134 0.5522
0.0397 1100 0.0433 - - - - - - -
0.0433 1200 0.0427 - - - - - - -
0.0469 1300 0.0414 - - - - - - -
0.0505 1400 0.0417 - - - - - - -
0.0542 1500 0.0418 0.6412 0.4285 0.8154 0.5866 0.6181 0.3219 0.5686
0.0578 1600 0.0404 - - - - - - -
0.0614 1700 0.0417 - - - - - - -
0.0650 1800 0.0407 - - - - - - -
0.0686 1900 0.0398 - - - - - - -
0.0722 2000 0.0401 0.6499 0.4354 0.8150 0.5610 0.6445 0.3152 0.5702
0.0758 2100 0.0404 - - - - - - -
0.0794 2200 0.0395 - - - - - - -
0.0830 2300 0.0404 - - - - - - -
0.0867 2400 0.0393 - - - - - - -
0.0903 2500 0.0387 0.6571 0.4435 0.8112 0.5786 0.6809 0.3232 0.5824
0.0939 2600 0.0397 - - - - - - -
0.0975 2700 0.0393 - - - - - - -
0.1011 2800 0.0384 - - - - - - -
0.1047 2900 0.0382 - - - - - - -
0.1083 3000 0.0381 0.6437 0.4751 0.8175 0.5711 0.6422 0.3203 0.5783
0.1119 3100 0.0382 - - - - - - -
0.1155 3200 0.0381 - - - - - - -
0.1191 3300 0.0385 - - - - - - -
0.1228 3400 0.0374 - - - - - - -
0.1264 3500 0.0382 0.6437 0.4833 0.8282 0.5955 0.6436 0.3190 0.5856
0.1300 3600 0.0365 - - - - - - -
0.1336 3700 0.0379 - - - - - - -
0.1372 3800 0.0376 - - - - - - -
0.1408 3900 0.0376 - - - - - - -
0.1444 4000 0.0378 0.6511 0.4760 0.8151 0.5806 0.6874 0.3140 0.5874
0.1480 4100 0.0365 - - - - - - -
0.1516 4200 0.0362 - - - - - - -
0.1553 4300 0.0374 - - - - - - -
0.1589 4400 0.0359 - - - - - - -
0.1625 4500 0.0368 0.6530 0.4458 0.8122 0.6101 0.6896 0.3174 0.5880
0.1661 4600 0.0356 - - - - - - -
0.1697 4700 0.0364 - - - - - - -
0.1733 4800 0.0352 - - - - - - -
0.1769 4900 0.0357 - - - - - - -
0.1805 5000 0.0366 0.6611 0.4680 0.8152 0.6260 0.6715 0.3252 0.5945
0.1841 5100 0.0358 - - - - - - -
0.1877 5200 0.0366 - - - - - - -
0.1914 5300 0.0348 - - - - - - -
0.1950 5400 0.036 - - - - - - -
0.1986 5500 0.0337 0.6595 0.4823 0.8162 0.6241 0.6620 0.3216 0.5943
0.2022 5600 0.0347 - - - - - - -
0.2058 5700 0.0361 - - - - - - -
0.2094 5800 0.0356 - - - - - - -
0.2130 5900 0.0359 - - - - - - -
0.2166 6000 0.0359 0.6560 0.4820 0.8121 0.6457 0.6587 0.3181 0.5954

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.0.2
  • PyLate: 1.2.0
  • Transformers: 4.48.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}

PyLate

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
Downloads last month
4
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Speedsy/modernbert-base-tr-uncased-colbert-6000

Finetuned
(42)
this model

Evaluation results