PyLate model based on Speedsy/turkish-multilingual-e5-small-32768

This is a PyLate model finetuned from Speedsy/turkish-multilingual-e5-small-32768 on the train dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Metrics

Py Late Information Retrieval

  • Dataset: ['NanoDBPedia', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNQ', 'NanoSCIDOCS']
  • Evaluated with pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
Metric NanoDBPedia NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNQ NanoSCIDOCS
MaxSim_accuracy@1 0.76 0.26 0.76 0.36 0.48 0.34
MaxSim_accuracy@3 0.92 0.46 0.94 0.48 0.66 0.54
MaxSim_accuracy@5 0.96 0.54 0.98 0.64 0.7 0.58
MaxSim_accuracy@10 0.96 0.64 0.98 0.72 0.8 0.66
MaxSim_precision@1 0.76 0.26 0.76 0.36 0.48 0.34
MaxSim_precision@3 0.6333 0.2067 0.4867 0.16 0.2267 0.24
MaxSim_precision@5 0.604 0.16 0.308 0.128 0.144 0.184
MaxSim_precision@10 0.508 0.102 0.17 0.072 0.084 0.128
MaxSim_recall@1 0.0986 0.1372 0.38 0.36 0.46 0.0717
MaxSim_recall@3 0.188 0.2915 0.73 0.48 0.64 0.1487
MaxSim_recall@5 0.2485 0.3707 0.77 0.64 0.67 0.1887
MaxSim_recall@10 0.3532 0.4531 0.85 0.72 0.76 0.2607
MaxSim_ndcg@10 0.6362 0.3393 0.7805 0.517 0.6149 0.2639
MaxSim_mrr@10 0.8367 0.3701 0.849 0.454 0.5769 0.4448
MaxSim_map@100 0.4908 0.2724 0.7118 0.4644 0.5709 0.2017

Pylate Custom Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with pylate_nano_beir_evaluator.PylateCustomNanoBEIREvaluator
Metric Value
MaxSim_accuracy@1 0.4933
MaxSim_accuracy@3 0.6667
MaxSim_accuracy@5 0.7333
MaxSim_accuracy@10 0.7933
MaxSim_precision@1 0.4933
MaxSim_precision@3 0.3256
MaxSim_precision@5 0.2547
MaxSim_precision@10 0.1773
MaxSim_recall@1 0.2512
MaxSim_recall@3 0.413
MaxSim_recall@5 0.4813
MaxSim_recall@10 0.5662
MaxSim_ndcg@10 0.5253
MaxSim_mrr@10 0.5886
MaxSim_map@100 0.452

Training Details

Training Dataset

train

  • Dataset: train at b9b0f7f
  • Size: 798,036 training samples
  • Columns: query_id, document_ids, and scores
  • Approximate statistics based on the first 1000 samples:
    query_id document_ids scores
    type string list list
    details
    • min: 4 tokens
    • mean: 5.82 tokens
    • max: 6 tokens
    • size: 32 elements
    • size: 32 elements
  • Samples:
    query_id document_ids scores
    817836 ['2716076', '6741935', '2681109', '5562684', '3507339', ...] [1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]
    1045170 ['5088671', '2953295', '8783471', '4268439', '6339935', ...] [1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]
    1154488 ['6498614', '3770829', '1060712', '2590533', '7672044', ...] [0.9497447609901428, 0.6662212610244751, 0.7423420548439026, 1.0, 0.6580896973609924, ...]
  • Loss: pylate.losses.distillation.Distillation

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • learning_rate: 3e-05
  • num_train_epochs: 1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss NanoDBPedia_MaxSim_ndcg@10 NanoFiQA2018_MaxSim_ndcg@10 NanoHotpotQA_MaxSim_ndcg@10 NanoMSMARCO_MaxSim_ndcg@10 NanoNQ_MaxSim_ndcg@10 NanoSCIDOCS_MaxSim_ndcg@10 NanoBEIR_mean_MaxSim_ndcg@10
0.0004 20 0.0321 - - - - - - -
0.0008 40 0.0316 - - - - - - -
0.0012 60 0.0305 - - - - - - -
0.0016 80 0.0298 - - - - - - -
0.0020 100 0.0291 - - - - - - -
0.0024 120 0.0286 - - - - - - -
0.0028 140 0.0268 - - - - - - -
0.0032 160 0.0262 - - - - - - -
0.0036 180 0.0282 - - - - - - -
0.0040 200 0.0264 - - - - - - -
0.0044 220 0.0257 - - - - - - -
0.0048 240 0.0267 - - - - - - -
0.0052 260 0.026 - - - - - - -
0.0056 280 0.0258 - - - - - - -
0.0060 300 0.025 - - - - - - -
0.0064 320 0.0238 - - - - - - -
0.0068 340 0.0242 - - - - - - -
0.0072 360 0.0256 - - - - - - -
0.0076 380 0.0259 - - - - - - -
0.0080 400 0.0254 - - - - - - -
0.0084 420 0.0245 - - - - - - -
0.0088 440 0.0253 - - - - - - -
0.0092 460 0.0252 - - - - - - -
0.0096 480 0.0238 - - - - - - -
0.0100 500 0.0259 0.6349 0.3320 0.7611 0.5174 0.6534 0.2696 0.5281
0.0104 520 0.0241 - - - - - - -
0.0108 540 0.024 - - - - - - -
0.0112 560 0.0247 - - - - - - -
0.0116 580 0.0234 - - - - - - -
0.0120 600 0.0244 - - - - - - -
0.0124 620 0.0261 - - - - - - -
0.0128 640 0.0267 - - - - - - -
0.0132 660 0.0246 - - - - - - -
0.0136 680 0.0243 - - - - - - -
0.0140 700 0.0231 - - - - - - -
0.0144 720 0.0247 - - - - - - -
0.0148 740 0.0228 - - - - - - -
0.0152 760 0.0239 - - - - - - -
0.0156 780 0.0255 - - - - - - -
0.0160 800 0.0238 - - - - - - -
0.0164 820 0.0249 - - - - - - -
0.0168 840 0.0249 - - - - - - -
0.0172 860 0.0239 - - - - - - -
0.0176 880 0.0247 - - - - - - -
0.0180 900 0.0257 - - - - - - -
0.0184 920 0.0248 - - - - - - -
0.0188 940 0.0235 - - - - - - -
0.0192 960 0.0232 - - - - - - -
0.0196 980 0.0229 - - - - - - -
0.0200 1000 0.024 0.6362 0.3393 0.7805 0.5170 0.6149 0.2639 0.5253

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 3.4.1
  • PyLate: 1.1.7
  • Transformers: 4.48.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}

PyLate

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
Downloads last month
4
Safetensors
Model size
34.2M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Speedsy/turkish-multilingual-e5-small-32768-colbert-1000

Finetuned
(42)
this model

Evaluation results