PyLate model based on Speedsy/turkish-multilingual-e5-small-32768

This is a PyLate model finetuned from Speedsy/turkish-multilingual-e5-small-32768 on the train dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Metrics

Py Late Information Retrieval

  • Dataset: ['NanoDBPedia', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNQ', 'NanoSCIDOCS']
  • Evaluated with pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
Metric NanoDBPedia NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNQ NanoSCIDOCS
MaxSim_accuracy@1 0.78 0.3 0.82 0.38 0.46 0.36
MaxSim_accuracy@3 0.9 0.48 0.9 0.56 0.66 0.5
MaxSim_accuracy@5 0.92 0.54 0.98 0.66 0.7 0.62
MaxSim_accuracy@10 0.96 0.64 0.98 0.76 0.82 0.72
MaxSim_precision@1 0.78 0.3 0.82 0.38 0.46 0.36
MaxSim_precision@3 0.6267 0.2067 0.4733 0.1867 0.2333 0.2333
MaxSim_precision@5 0.612 0.164 0.324 0.132 0.148 0.208
MaxSim_precision@10 0.51 0.106 0.17 0.076 0.086 0.132
MaxSim_recall@1 0.0989 0.1562 0.41 0.38 0.44 0.0757
MaxSim_recall@3 0.1727 0.2975 0.71 0.56 0.64 0.1437
MaxSim_recall@5 0.2452 0.3566 0.81 0.66 0.68 0.2127
MaxSim_recall@10 0.3557 0.457 0.85 0.76 0.77 0.2697
MaxSim_ndcg@10 0.6387 0.3644 0.7904 0.5583 0.6175 0.27
MaxSim_mrr@10 0.8427 0.4125 0.8737 0.4947 0.5782 0.4619
MaxSim_map@100 0.4894 0.3 0.7217 0.5038 0.5679 0.204

Pylate Custom Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with pylate_nano_beir_evaluator.PylateCustomNanoBEIREvaluator
Metric Value
MaxSim_accuracy@1 0.5167
MaxSim_accuracy@3 0.6667
MaxSim_accuracy@5 0.7367
MaxSim_accuracy@10 0.8133
MaxSim_precision@1 0.5167
MaxSim_precision@3 0.3267
MaxSim_precision@5 0.2647
MaxSim_precision@10 0.18
MaxSim_recall@1 0.2601
MaxSim_recall@3 0.4206
MaxSim_recall@5 0.4941
MaxSim_recall@10 0.577
MaxSim_ndcg@10 0.5399
MaxSim_mrr@10 0.6106
MaxSim_map@100 0.4645

Training Details

Training Dataset

train

  • Dataset: train at b9b0f7f
  • Size: 798,036 training samples
  • Columns: query_id, document_ids, and scores
  • Approximate statistics based on the first 1000 samples:
    query_id document_ids scores
    type string list list
    details
    • min: 4 tokens
    • mean: 5.82 tokens
    • max: 6 tokens
    • size: 32 elements
    • size: 32 elements
  • Samples:
    query_id document_ids scores
    817836 ['2716076', '6741935', '2681109', '5562684', '3507339', ...] [1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]
    1045170 ['5088671', '2953295', '8783471', '4268439', '6339935', ...] [1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]
    1154488 ['6498614', '3770829', '1060712', '2590533', '7672044', ...] [0.9497447609901428, 0.6662212610244751, 0.7423420548439026, 1.0, 0.6580896973609924, ...]
  • Loss: pylate.losses.distillation.Distillation

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • learning_rate: 3e-05
  • num_train_epochs: 1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss NanoDBPedia_MaxSim_ndcg@10 NanoFiQA2018_MaxSim_ndcg@10 NanoHotpotQA_MaxSim_ndcg@10 NanoMSMARCO_MaxSim_ndcg@10 NanoNQ_MaxSim_ndcg@10 NanoSCIDOCS_MaxSim_ndcg@10 NanoBEIR_mean_MaxSim_ndcg@10
0.0004 20 0.0321 - - - - - - -
0.0008 40 0.0316 - - - - - - -
0.0012 60 0.0305 - - - - - - -
0.0016 80 0.0298 - - - - - - -
0.0020 100 0.0291 - - - - - - -
0.0024 120 0.0286 - - - - - - -
0.0028 140 0.0268 - - - - - - -
0.0032 160 0.0262 - - - - - - -
0.0036 180 0.0282 - - - - - - -
0.0040 200 0.0264 - - - - - - -
0.0044 220 0.0257 - - - - - - -
0.0048 240 0.0267 - - - - - - -
0.0052 260 0.026 - - - - - - -
0.0056 280 0.0258 - - - - - - -
0.0060 300 0.025 - - - - - - -
0.0064 320 0.0238 - - - - - - -
0.0068 340 0.0242 - - - - - - -
0.0072 360 0.0256 - - - - - - -
0.0076 380 0.0259 - - - - - - -
0.0080 400 0.0254 - - - - - - -
0.0084 420 0.0245 - - - - - - -
0.0088 440 0.0253 - - - - - - -
0.0092 460 0.0252 - - - - - - -
0.0096 480 0.0238 - - - - - - -
0.0100 500 0.0259 0.6349 0.3320 0.7611 0.5174 0.6534 0.2696 0.5281
0.0104 520 0.0241 - - - - - - -
0.0108 540 0.024 - - - - - - -
0.0112 560 0.0247 - - - - - - -
0.0116 580 0.0234 - - - - - - -
0.0120 600 0.0244 - - - - - - -
0.0124 620 0.0261 - - - - - - -
0.0128 640 0.0267 - - - - - - -
0.0132 660 0.0246 - - - - - - -
0.0136 680 0.0243 - - - - - - -
0.0140 700 0.0231 - - - - - - -
0.0144 720 0.0247 - - - - - - -
0.0148 740 0.0228 - - - - - - -
0.0152 760 0.0239 - - - - - - -
0.0156 780 0.0255 - - - - - - -
0.0160 800 0.0238 - - - - - - -
0.0164 820 0.0249 - - - - - - -
0.0168 840 0.0249 - - - - - - -
0.0172 860 0.0239 - - - - - - -
0.0176 880 0.0247 - - - - - - -
0.0180 900 0.0257 - - - - - - -
0.0184 920 0.0248 - - - - - - -
0.0188 940 0.0235 - - - - - - -
0.0192 960 0.0232 - - - - - - -
0.0196 980 0.0229 - - - - - - -
0.0200 1000 0.024 0.6362 0.3393 0.7805 0.5170 0.6149 0.2639 0.5253
0.0204 1020 0.0233 - - - - - - -
0.0209 1040 0.0227 - - - - - - -
0.0213 1060 0.0237 - - - - - - -
0.0217 1080 0.0244 - - - - - - -
0.0221 1100 0.0225 - - - - - - -
0.0225 1120 0.023 - - - - - - -
0.0229 1140 0.0241 - - - - - - -
0.0233 1160 0.0248 - - - - - - -
0.0237 1180 0.0246 - - - - - - -
0.0241 1200 0.0256 - - - - - - -
0.0245 1220 0.0235 - - - - - - -
0.0249 1240 0.0221 - - - - - - -
0.0253 1260 0.024 - - - - - - -
0.0257 1280 0.0233 - - - - - - -
0.0261 1300 0.0233 - - - - - - -
0.0265 1320 0.0236 - - - - - - -
0.0269 1340 0.0231 - - - - - - -
0.0273 1360 0.0244 - - - - - - -
0.0277 1380 0.0225 - - - - - - -
0.0281 1400 0.0223 - - - - - - -
0.0285 1420 0.0245 - - - - - - -
0.0289 1440 0.0235 - - - - - - -
0.0293 1460 0.0244 - - - - - - -
0.0297 1480 0.0234 - - - - - - -
0.0301 1500 0.0238 0.6391 0.3643 0.7656 0.5385 0.6161 0.2763 0.5333
0.0305 1520 0.0234 - - - - - - -
0.0309 1540 0.0218 - - - - - - -
0.0313 1560 0.0226 - - - - - - -
0.0317 1580 0.0229 - - - - - - -
0.0321 1600 0.0234 - - - - - - -
0.0325 1620 0.0243 - - - - - - -
0.0329 1640 0.0234 - - - - - - -
0.0333 1660 0.0225 - - - - - - -
0.0337 1680 0.022 - - - - - - -
0.0341 1700 0.022 - - - - - - -
0.0345 1720 0.0225 - - - - - - -
0.0349 1740 0.023 - - - - - - -
0.0353 1760 0.0234 - - - - - - -
0.0357 1780 0.0242 - - - - - - -
0.0361 1800 0.0227 - - - - - - -
0.0365 1820 0.0228 - - - - - - -
0.0369 1840 0.0218 - - - - - - -
0.0373 1860 0.0236 - - - - - - -
0.0377 1880 0.0242 - - - - - - -
0.0381 1900 0.0234 - - - - - - -
0.0385 1920 0.0236 - - - - - - -
0.0389 1940 0.023 - - - - - - -
0.0393 1960 0.0228 - - - - - - -
0.0397 1980 0.0245 - - - - - - -
0.0401 2000 0.0228 0.6387 0.3644 0.7904 0.5583 0.6175 0.2700 0.5399

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 3.4.1
  • PyLate: 1.1.7
  • Transformers: 4.48.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}

PyLate

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
Downloads last month
4
Safetensors
Model size
34.2M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Speedsy/turkish-multilingual-e5-small-32768-colbert-2000

Finetuned
(42)
this model

Evaluation results