PyLate model based on Speedsy/turkish-multilingual-e5-small-32768
This is a PyLate model finetuned from Speedsy/turkish-multilingual-e5-small-32768 on the train dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
Model Details
Model Description
- Model Type: PyLate model
- Base model: Speedsy/turkish-multilingual-e5-small-32768
- Document Length: 180 tokens
- Query Length: 32 tokens
- Output Dimensionality: 128 tokens
- Similarity Function: MaxSim
- Training Dataset:
- Language: en
Model Sources
- Documentation: PyLate Documentation
- Repository: PyLate on GitHub
- Hugging Face: PyLate models on Hugging Face
Full Model Architecture
ColBERT(
(0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel
(1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
First install the PyLate library:
pip install -U pylate
Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
Evaluation
Metrics
Py Late Information Retrieval
- Dataset:
['NanoDBPedia', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNQ', 'NanoSCIDOCS']
- Evaluated with
pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
Metric | NanoDBPedia | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNQ | NanoSCIDOCS |
---|---|---|---|---|---|---|
MaxSim_accuracy@1 | 0.82 | 0.42 | 0.84 | 0.34 | 0.52 | 0.36 |
MaxSim_accuracy@3 | 0.92 | 0.54 | 0.96 | 0.54 | 0.68 | 0.62 |
MaxSim_accuracy@5 | 0.94 | 0.58 | 0.96 | 0.6 | 0.74 | 0.7 |
MaxSim_accuracy@10 | 0.98 | 0.7 | 0.96 | 0.74 | 0.8 | 0.74 |
MaxSim_precision@1 | 0.82 | 0.42 | 0.84 | 0.34 | 0.52 | 0.36 |
MaxSim_precision@3 | 0.6333 | 0.24 | 0.5067 | 0.18 | 0.2267 | 0.28 |
MaxSim_precision@5 | 0.572 | 0.18 | 0.32 | 0.12 | 0.152 | 0.236 |
MaxSim_precision@10 | 0.512 | 0.11 | 0.17 | 0.074 | 0.086 | 0.146 |
MaxSim_recall@1 | 0.1025 | 0.2334 | 0.42 | 0.34 | 0.49 | 0.0757 |
MaxSim_recall@3 | 0.2049 | 0.361 | 0.76 | 0.54 | 0.63 | 0.1727 |
MaxSim_recall@5 | 0.2539 | 0.4133 | 0.8 | 0.6 | 0.7 | 0.2427 |
MaxSim_recall@10 | 0.3696 | 0.5205 | 0.85 | 0.74 | 0.77 | 0.2987 |
MaxSim_ndcg@10 | 0.6463 | 0.4256 | 0.8032 | 0.534 | 0.6405 | 0.2994 |
MaxSim_mrr@10 | 0.8767 | 0.4915 | 0.8933 | 0.4695 | 0.6194 | 0.4989 |
MaxSim_map@100 | 0.5106 | 0.3578 | 0.7391 | 0.4789 | 0.593 | 0.2308 |
Pylate Custom Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
pylate_nano_beir_evaluator.PylateCustomNanoBEIREvaluator
Metric | Value |
---|---|
MaxSim_accuracy@1 | 0.55 |
MaxSim_accuracy@3 | 0.71 |
MaxSim_accuracy@5 | 0.7533 |
MaxSim_accuracy@10 | 0.82 |
MaxSim_precision@1 | 0.55 |
MaxSim_precision@3 | 0.3444 |
MaxSim_precision@5 | 0.2633 |
MaxSim_precision@10 | 0.183 |
MaxSim_recall@1 | 0.2769 |
MaxSim_recall@3 | 0.4448 |
MaxSim_recall@5 | 0.5016 |
MaxSim_recall@10 | 0.5915 |
MaxSim_ndcg@10 | 0.5582 |
MaxSim_mrr@10 | 0.6416 |
MaxSim_map@100 | 0.485 |
Training Details
Training Dataset
train
- Dataset: train at 1072b6b
- Size: 443,147 training samples
- Columns:
query_id
,document_ids
, andscores
- Approximate statistics based on the first 1000 samples:
query_id document_ids scores type string list list details - min: 5 tokens
- mean: 5.83 tokens
- max: 6 tokens
- size: 32 elements
- size: 32 elements
- Samples:
query_id document_ids scores 817836
['2716076', '6741935', '2681109', '5562684', '3507339', ...]
[1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]
1045170
['5088671', '2953295', '8783471', '4268439', '6339935', ...]
[1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]
1069432
['3724008', '314949', '8657336', '7420456', '879004', ...]
[1.0, 0.3706032931804657, 0.3508036434650421, 0.2823200523853302, 0.17563475668430328, ...]
- Loss:
pylate.losses.distillation.Distillation
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32learning_rate
: 3e-05num_train_epochs
: 1bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | NanoDBPedia_MaxSim_ndcg@10 | NanoFiQA2018_MaxSim_ndcg@10 | NanoHotpotQA_MaxSim_ndcg@10 | NanoMSMARCO_MaxSim_ndcg@10 | NanoNQ_MaxSim_ndcg@10 | NanoSCIDOCS_MaxSim_ndcg@10 | NanoBEIR_mean_MaxSim_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|
0.0014 | 20 | 0.0332 | - | - | - | - | - | - | - |
0.0029 | 40 | 0.0297 | - | - | - | - | - | - | - |
0.0043 | 60 | 0.0285 | - | - | - | - | - | - | - |
0.0058 | 80 | 0.0289 | - | - | - | - | - | - | - |
0.0072 | 100 | 0.0278 | - | - | - | - | - | - | - |
0.0087 | 120 | 0.0271 | - | - | - | - | - | - | - |
0.0101 | 140 | 0.0267 | - | - | - | - | - | - | - |
0.0116 | 160 | 0.0269 | - | - | - | - | - | - | - |
0.0130 | 180 | 0.0264 | - | - | - | - | - | - | - |
0.0144 | 200 | 0.0262 | - | - | - | - | - | - | - |
0.0159 | 220 | 0.0259 | - | - | - | - | - | - | - |
0.0173 | 240 | 0.026 | - | - | - | - | - | - | - |
0.0188 | 260 | 0.0251 | - | - | - | - | - | - | - |
0.0202 | 280 | 0.025 | - | - | - | - | - | - | - |
0.0217 | 300 | 0.025 | - | - | - | - | - | - | - |
0.0231 | 320 | 0.0261 | - | - | - | - | - | - | - |
0.0246 | 340 | 0.0249 | - | - | - | - | - | - | - |
0.0260 | 360 | 0.0249 | - | - | - | - | - | - | - |
0.0274 | 380 | 0.0243 | - | - | - | - | - | - | - |
0.0289 | 400 | 0.0245 | - | - | - | - | - | - | - |
0.0303 | 420 | 0.0247 | - | - | - | - | - | - | - |
0.0318 | 440 | 0.0245 | - | - | - | - | - | - | - |
0.0332 | 460 | 0.0234 | - | - | - | - | - | - | - |
0.0347 | 480 | 0.0235 | - | - | - | - | - | - | - |
0.0361 | 500 | 0.0245 | 0.6352 | 0.3462 | 0.7674 | 0.5245 | 0.6220 | 0.2769 | 0.5287 |
0.0375 | 520 | 0.0244 | - | - | - | - | - | - | - |
0.0390 | 540 | 0.0233 | - | - | - | - | - | - | - |
0.0404 | 560 | 0.0239 | - | - | - | - | - | - | - |
0.0419 | 580 | 0.0232 | - | - | - | - | - | - | - |
0.0433 | 600 | 0.0225 | - | - | - | - | - | - | - |
0.0448 | 620 | 0.0234 | - | - | - | - | - | - | - |
0.0462 | 640 | 0.0245 | - | - | - | - | - | - | - |
0.0477 | 660 | 0.0229 | - | - | - | - | - | - | - |
0.0491 | 680 | 0.0232 | - | - | - | - | - | - | - |
0.0505 | 700 | 0.023 | - | - | - | - | - | - | - |
0.0520 | 720 | 0.0238 | - | - | - | - | - | - | - |
0.0534 | 740 | 0.0239 | - | - | - | - | - | - | - |
0.0549 | 760 | 0.0229 | - | - | - | - | - | - | - |
0.0563 | 780 | 0.0237 | - | - | - | - | - | - | - |
0.0578 | 800 | 0.0236 | - | - | - | - | - | - | - |
0.0592 | 820 | 0.0224 | - | - | - | - | - | - | - |
0.0607 | 840 | 0.0226 | - | - | - | - | - | - | - |
0.0621 | 860 | 0.0225 | - | - | - | - | - | - | - |
0.0635 | 880 | 0.023 | - | - | - | - | - | - | - |
0.0650 | 900 | 0.0232 | - | - | - | - | - | - | - |
0.0664 | 920 | 0.0224 | - | - | - | - | - | - | - |
0.0679 | 940 | 0.0227 | - | - | - | - | - | - | - |
0.0693 | 960 | 0.0231 | - | - | - | - | - | - | - |
0.0708 | 980 | 0.0238 | - | - | - | - | - | - | - |
0.0722 | 1000 | 0.0224 | 0.6463 | 0.3673 | 0.7878 | 0.5283 | 0.6466 | 0.2869 | 0.5439 |
0.0737 | 1020 | 0.0225 | - | - | - | - | - | - | - |
0.0751 | 1040 | 0.0223 | - | - | - | - | - | - | - |
0.0765 | 1060 | 0.023 | - | - | - | - | - | - | - |
0.0780 | 1080 | 0.0218 | - | - | - | - | - | - | - |
0.0794 | 1100 | 0.0228 | - | - | - | - | - | - | - |
0.0809 | 1120 | 0.0219 | - | - | - | - | - | - | - |
0.0823 | 1140 | 0.0225 | - | - | - | - | - | - | - |
0.0838 | 1160 | 0.0231 | - | - | - | - | - | - | - |
0.0852 | 1180 | 0.0233 | - | - | - | - | - | - | - |
0.0866 | 1200 | 0.0224 | - | - | - | - | - | - | - |
0.0881 | 1220 | 0.0223 | - | - | - | - | - | - | - |
0.0895 | 1240 | 0.0216 | - | - | - | - | - | - | - |
0.0910 | 1260 | 0.0227 | - | - | - | - | - | - | - |
0.0924 | 1280 | 0.0218 | - | - | - | - | - | - | - |
0.0939 | 1300 | 0.0222 | - | - | - | - | - | - | - |
0.0953 | 1320 | 0.0218 | - | - | - | - | - | - | - |
0.0968 | 1340 | 0.0216 | - | - | - | - | - | - | - |
0.0982 | 1360 | 0.0227 | - | - | - | - | - | - | - |
0.0996 | 1380 | 0.0211 | - | - | - | - | - | - | - |
0.1011 | 1400 | 0.022 | - | - | - | - | - | - | - |
0.1025 | 1420 | 0.0211 | - | - | - | - | - | - | - |
0.1040 | 1440 | 0.0219 | - | - | - | - | - | - | - |
0.1054 | 1460 | 0.023 | - | - | - | - | - | - | - |
0.1069 | 1480 | 0.0215 | - | - | - | - | - | - | - |
0.1083 | 1500 | 0.022 | 0.6323 | 0.3640 | 0.7771 | 0.4895 | 0.6553 | 0.2903 | 0.5348 |
0.1098 | 1520 | 0.0222 | - | - | - | - | - | - | - |
0.1112 | 1540 | 0.0222 | - | - | - | - | - | - | - |
0.1126 | 1560 | 0.0227 | - | - | - | - | - | - | - |
0.1141 | 1580 | 0.0225 | - | - | - | - | - | - | - |
0.1155 | 1600 | 0.0222 | - | - | - | - | - | - | - |
0.1170 | 1620 | 0.0217 | - | - | - | - | - | - | - |
0.1184 | 1640 | 0.0217 | - | - | - | - | - | - | - |
0.1199 | 1660 | 0.0224 | - | - | - | - | - | - | - |
0.1213 | 1680 | 0.0215 | - | - | - | - | - | - | - |
0.1228 | 1700 | 0.022 | - | - | - | - | - | - | - |
0.1242 | 1720 | 0.0222 | - | - | - | - | - | - | - |
0.1256 | 1740 | 0.0208 | - | - | - | - | - | - | - |
0.1271 | 1760 | 0.0224 | - | - | - | - | - | - | - |
0.1285 | 1780 | 0.0205 | - | - | - | - | - | - | - |
0.1300 | 1800 | 0.0214 | - | - | - | - | - | - | - |
0.1314 | 1820 | 0.0212 | - | - | - | - | - | - | - |
0.1329 | 1840 | 0.0207 | - | - | - | - | - | - | - |
0.1343 | 1860 | 0.0213 | - | - | - | - | - | - | - |
0.1357 | 1880 | 0.0211 | - | - | - | - | - | - | - |
0.1372 | 1900 | 0.0215 | - | - | - | - | - | - | - |
0.1386 | 1920 | 0.0218 | - | - | - | - | - | - | - |
0.1401 | 1940 | 0.0216 | - | - | - | - | - | - | - |
0.1415 | 1960 | 0.022 | - | - | - | - | - | - | - |
0.1430 | 1980 | 0.0222 | - | - | - | - | - | - | - |
0.1444 | 2000 | 0.0217 | 0.6472 | 0.3492 | 0.7873 | 0.5109 | 0.6687 | 0.3043 | 0.5446 |
0.1459 | 2020 | 0.022 | - | - | - | - | - | - | - |
0.1473 | 2040 | 0.0204 | - | - | - | - | - | - | - |
0.1487 | 2060 | 0.0215 | - | - | - | - | - | - | - |
0.1502 | 2080 | 0.0215 | - | - | - | - | - | - | - |
0.1516 | 2100 | 0.0217 | - | - | - | - | - | - | - |
0.1531 | 2120 | 0.0214 | - | - | - | - | - | - | - |
0.1545 | 2140 | 0.0217 | - | - | - | - | - | - | - |
0.1560 | 2160 | 0.022 | - | - | - | - | - | - | - |
0.1574 | 2180 | 0.0211 | - | - | - | - | - | - | - |
0.1589 | 2200 | 0.0212 | - | - | - | - | - | - | - |
0.1603 | 2220 | 0.0215 | - | - | - | - | - | - | - |
0.1617 | 2240 | 0.0212 | - | - | - | - | - | - | - |
0.1632 | 2260 | 0.0206 | - | - | - | - | - | - | - |
0.1646 | 2280 | 0.0213 | - | - | - | - | - | - | - |
0.1661 | 2300 | 0.0216 | - | - | - | - | - | - | - |
0.1675 | 2320 | 0.0219 | - | - | - | - | - | - | - |
0.1690 | 2340 | 0.0214 | - | - | - | - | - | - | - |
0.1704 | 2360 | 0.0206 | - | - | - | - | - | - | - |
0.1719 | 2380 | 0.0209 | - | - | - | - | - | - | - |
0.1733 | 2400 | 0.0216 | - | - | - | - | - | - | - |
0.1747 | 2420 | 0.0211 | - | - | - | - | - | - | - |
0.1762 | 2440 | 0.0198 | - | - | - | - | - | - | - |
0.1776 | 2460 | 0.0207 | - | - | - | - | - | - | - |
0.1791 | 2480 | 0.0218 | - | - | - | - | - | - | - |
0.1805 | 2500 | 0.0211 | 0.6445 | 0.3645 | 0.7612 | 0.5291 | 0.6565 | 0.2904 | 0.5411 |
0.1820 | 2520 | 0.0222 | - | - | - | - | - | - | - |
0.1834 | 2540 | 0.021 | - | - | - | - | - | - | - |
0.1849 | 2560 | 0.021 | - | - | - | - | - | - | - |
0.1863 | 2580 | 0.0213 | - | - | - | - | - | - | - |
0.1877 | 2600 | 0.0214 | - | - | - | - | - | - | - |
0.1892 | 2620 | 0.0216 | - | - | - | - | - | - | - |
0.1906 | 2640 | 0.0206 | - | - | - | - | - | - | - |
0.1921 | 2660 | 0.021 | - | - | - | - | - | - | - |
0.1935 | 2680 | 0.0213 | - | - | - | - | - | - | - |
0.1950 | 2700 | 0.0207 | - | - | - | - | - | - | - |
0.1964 | 2720 | 0.0214 | - | - | - | - | - | - | - |
0.1978 | 2740 | 0.0202 | - | - | - | - | - | - | - |
0.1993 | 2760 | 0.0201 | - | - | - | - | - | - | - |
0.2007 | 2780 | 0.0204 | - | - | - | - | - | - | - |
0.2022 | 2800 | 0.0207 | - | - | - | - | - | - | - |
0.2036 | 2820 | 0.0212 | - | - | - | - | - | - | - |
0.2051 | 2840 | 0.0205 | - | - | - | - | - | - | - |
0.2065 | 2860 | 0.0206 | - | - | - | - | - | - | - |
0.2080 | 2880 | 0.0205 | - | - | - | - | - | - | - |
0.2094 | 2900 | 0.0211 | - | - | - | - | - | - | - |
0.2108 | 2920 | 0.0209 | - | - | - | - | - | - | - |
0.2123 | 2940 | 0.0209 | - | - | - | - | - | - | - |
0.2137 | 2960 | 0.0213 | - | - | - | - | - | - | - |
0.2152 | 2980 | 0.0205 | - | - | - | - | - | - | - |
0.2166 | 3000 | 0.0201 | 0.6543 | 0.4016 | 0.7867 | 0.5219 | 0.6615 | 0.2656 | 0.5486 |
0.2181 | 3020 | 0.0221 | - | - | - | - | - | - | - |
0.2195 | 3040 | 0.0207 | - | - | - | - | - | - | - |
0.2210 | 3060 | 0.0208 | - | - | - | - | - | - | - |
0.2224 | 3080 | 0.0209 | - | - | - | - | - | - | - |
0.2238 | 3100 | 0.0209 | - | - | - | - | - | - | - |
0.2253 | 3120 | 0.0206 | - | - | - | - | - | - | - |
0.2267 | 3140 | 0.0203 | - | - | - | - | - | - | - |
0.2282 | 3160 | 0.0206 | - | - | - | - | - | - | - |
0.2296 | 3180 | 0.0207 | - | - | - | - | - | - | - |
0.2311 | 3200 | 0.0211 | - | - | - | - | - | - | - |
0.2325 | 3220 | 0.0213 | - | - | - | - | - | - | - |
0.2340 | 3240 | 0.0203 | - | - | - | - | - | - | - |
0.2354 | 3260 | 0.0205 | - | - | - | - | - | - | - |
0.2368 | 3280 | 0.0219 | - | - | - | - | - | - | - |
0.2383 | 3300 | 0.0197 | - | - | - | - | - | - | - |
0.2397 | 3320 | 0.0207 | - | - | - | - | - | - | - |
0.2412 | 3340 | 0.0205 | - | - | - | - | - | - | - |
0.2426 | 3360 | 0.0208 | - | - | - | - | - | - | - |
0.2441 | 3380 | 0.0201 | - | - | - | - | - | - | - |
0.2455 | 3400 | 0.0213 | - | - | - | - | - | - | - |
0.2469 | 3420 | 0.0207 | - | - | - | - | - | - | - |
0.2484 | 3440 | 0.02 | - | - | - | - | - | - | - |
0.2498 | 3460 | 0.0204 | - | - | - | - | - | - | - |
0.2513 | 3480 | 0.0201 | - | - | - | - | - | - | - |
0.2527 | 3500 | 0.0211 | 0.6481 | 0.3850 | 0.7743 | 0.5167 | 0.6401 | 0.2750 | 0.5399 |
0.2542 | 3520 | 0.021 | - | - | - | - | - | - | - |
0.2556 | 3540 | 0.0208 | - | - | - | - | - | - | - |
0.2571 | 3560 | 0.02 | - | - | - | - | - | - | - |
0.2585 | 3580 | 0.0211 | - | - | - | - | - | - | - |
0.2599 | 3600 | 0.0199 | - | - | - | - | - | - | - |
0.2614 | 3620 | 0.0192 | - | - | - | - | - | - | - |
0.2628 | 3640 | 0.0203 | - | - | - | - | - | - | - |
0.2643 | 3660 | 0.0197 | - | - | - | - | - | - | - |
0.2657 | 3680 | 0.0196 | - | - | - | - | - | - | - |
0.2672 | 3700 | 0.0198 | - | - | - | - | - | - | - |
0.2686 | 3720 | 0.0213 | - | - | - | - | - | - | - |
0.2701 | 3740 | 0.0199 | - | - | - | - | - | - | - |
0.2715 | 3760 | 0.0205 | - | - | - | - | - | - | - |
0.2729 | 3780 | 0.0205 | - | - | - | - | - | - | - |
0.2744 | 3800 | 0.0207 | - | - | - | - | - | - | - |
0.2758 | 3820 | 0.0204 | - | - | - | - | - | - | - |
0.2773 | 3840 | 0.0209 | - | - | - | - | - | - | - |
0.2787 | 3860 | 0.0211 | - | - | - | - | - | - | - |
0.2802 | 3880 | 0.0199 | - | - | - | - | - | - | - |
0.2816 | 3900 | 0.0212 | - | - | - | - | - | - | - |
0.2831 | 3920 | 0.0194 | - | - | - | - | - | - | - |
0.2845 | 3940 | 0.0196 | - | - | - | - | - | - | - |
0.2859 | 3960 | 0.0211 | - | - | - | - | - | - | - |
0.2874 | 3980 | 0.0198 | - | - | - | - | - | - | - |
0.2888 | 4000 | 0.0207 | 0.6402 | 0.3955 | 0.7813 | 0.4997 | 0.6360 | 0.2845 | 0.5395 |
0.2903 | 4020 | 0.0193 | - | - | - | - | - | - | - |
0.2917 | 4040 | 0.0198 | - | - | - | - | - | - | - |
0.2932 | 4060 | 0.0208 | - | - | - | - | - | - | - |
0.2946 | 4080 | 0.02 | - | - | - | - | - | - | - |
0.2961 | 4100 | 0.0202 | - | - | - | - | - | - | - |
0.2975 | 4120 | 0.0198 | - | - | - | - | - | - | - |
0.2989 | 4140 | 0.0193 | - | - | - | - | - | - | - |
0.3004 | 4160 | 0.0202 | - | - | - | - | - | - | - |
0.3018 | 4180 | 0.0198 | - | - | - | - | - | - | - |
0.3033 | 4200 | 0.0198 | - | - | - | - | - | - | - |
0.3047 | 4220 | 0.0197 | - | - | - | - | - | - | - |
0.3062 | 4240 | 0.0198 | - | - | - | - | - | - | - |
0.3076 | 4260 | 0.0191 | - | - | - | - | - | - | - |
0.3090 | 4280 | 0.019 | - | - | - | - | - | - | - |
0.3105 | 4300 | 0.0194 | - | - | - | - | - | - | - |
0.3119 | 4320 | 0.0207 | - | - | - | - | - | - | - |
0.3134 | 4340 | 0.019 | - | - | - | - | - | - | - |
0.3148 | 4360 | 0.0202 | - | - | - | - | - | - | - |
0.3163 | 4380 | 0.0202 | - | - | - | - | - | - | - |
0.3177 | 4400 | 0.0204 | - | - | - | - | - | - | - |
0.3192 | 4420 | 0.02 | - | - | - | - | - | - | - |
0.3206 | 4440 | 0.0198 | - | - | - | - | - | - | - |
0.3220 | 4460 | 0.0191 | - | - | - | - | - | - | - |
0.3235 | 4480 | 0.02 | - | - | - | - | - | - | - |
0.3249 | 4500 | 0.0199 | 0.6381 | 0.4037 | 0.7803 | 0.5196 | 0.6260 | 0.2848 | 0.5421 |
0.3264 | 4520 | 0.0209 | - | - | - | - | - | - | - |
0.3278 | 4540 | 0.0207 | - | - | - | - | - | - | - |
0.3293 | 4560 | 0.0204 | - | - | - | - | - | - | - |
0.3307 | 4580 | 0.0197 | - | - | - | - | - | - | - |
0.3322 | 4600 | 0.0198 | - | - | - | - | - | - | - |
0.3336 | 4620 | 0.0198 | - | - | - | - | - | - | - |
0.3350 | 4640 | 0.0194 | - | - | - | - | - | - | - |
0.3365 | 4660 | 0.0201 | - | - | - | - | - | - | - |
0.3379 | 4680 | 0.0197 | - | - | - | - | - | - | - |
0.3394 | 4700 | 0.0195 | - | - | - | - | - | - | - |
0.3408 | 4720 | 0.0187 | - | - | - | - | - | - | - |
0.3423 | 4740 | 0.0194 | - | - | - | - | - | - | - |
0.3437 | 4760 | 0.0192 | - | - | - | - | - | - | - |
0.3452 | 4780 | 0.0202 | - | - | - | - | - | - | - |
0.3466 | 4800 | 0.0191 | - | - | - | - | - | - | - |
0.3480 | 4820 | 0.0194 | - | - | - | - | - | - | - |
0.3495 | 4840 | 0.0205 | - | - | - | - | - | - | - |
0.3509 | 4860 | 0.019 | - | - | - | - | - | - | - |
0.3524 | 4880 | 0.0202 | - | - | - | - | - | - | - |
0.3538 | 4900 | 0.0191 | - | - | - | - | - | - | - |
0.3553 | 4920 | 0.0194 | - | - | - | - | - | - | - |
0.3567 | 4940 | 0.0192 | - | - | - | - | - | - | - |
0.3581 | 4960 | 0.0195 | - | - | - | - | - | - | - |
0.3596 | 4980 | 0.0197 | - | - | - | - | - | - | - |
0.3610 | 5000 | 0.0202 | 0.6362 | 0.3887 | 0.7957 | 0.5114 | 0.6366 | 0.2755 | 0.5407 |
0.3625 | 5020 | 0.0196 | - | - | - | - | - | - | - |
0.3639 | 5040 | 0.0203 | - | - | - | - | - | - | - |
0.3654 | 5060 | 0.0201 | - | - | - | - | - | - | - |
0.3668 | 5080 | 0.0193 | - | - | - | - | - | - | - |
0.3683 | 5100 | 0.019 | - | - | - | - | - | - | - |
0.3697 | 5120 | 0.0195 | - | - | - | - | - | - | - |
0.3711 | 5140 | 0.0197 | - | - | - | - | - | - | - |
0.3726 | 5160 | 0.0198 | - | - | - | - | - | - | - |
0.3740 | 5180 | 0.0198 | - | - | - | - | - | - | - |
0.3755 | 5200 | 0.0203 | - | - | - | - | - | - | - |
0.3769 | 5220 | 0.0192 | - | - | - | - | - | - | - |
0.3784 | 5240 | 0.0202 | - | - | - | - | - | - | - |
0.3798 | 5260 | 0.02 | - | - | - | - | - | - | - |
0.3813 | 5280 | 0.0198 | - | - | - | - | - | - | - |
0.3827 | 5300 | 0.0189 | - | - | - | - | - | - | - |
0.3841 | 5320 | 0.0206 | - | - | - | - | - | - | - |
0.3856 | 5340 | 0.0196 | - | - | - | - | - | - | - |
0.3870 | 5360 | 0.0194 | - | - | - | - | - | - | - |
0.3885 | 5380 | 0.0194 | - | - | - | - | - | - | - |
0.3899 | 5400 | 0.0197 | - | - | - | - | - | - | - |
0.3914 | 5420 | 0.0196 | - | - | - | - | - | - | - |
0.3928 | 5440 | 0.0203 | - | - | - | - | - | - | - |
0.3943 | 5460 | 0.0196 | - | - | - | - | - | - | - |
0.3957 | 5480 | 0.0206 | - | - | - | - | - | - | - |
0.3971 | 5500 | 0.0196 | 0.6268 | 0.4017 | 0.7928 | 0.5383 | 0.6415 | 0.2983 | 0.5499 |
0.3986 | 5520 | 0.0191 | - | - | - | - | - | - | - |
0.4000 | 5540 | 0.0194 | - | - | - | - | - | - | - |
0.4015 | 5560 | 0.0193 | - | - | - | - | - | - | - |
0.4029 | 5580 | 0.0197 | - | - | - | - | - | - | - |
0.4044 | 5600 | 0.0196 | - | - | - | - | - | - | - |
0.4058 | 5620 | 0.0194 | - | - | - | - | - | - | - |
0.4072 | 5640 | 0.0201 | - | - | - | - | - | - | - |
0.4087 | 5660 | 0.0199 | - | - | - | - | - | - | - |
0.4101 | 5680 | 0.0197 | - | - | - | - | - | - | - |
0.4116 | 5700 | 0.0189 | - | - | - | - | - | - | - |
0.4130 | 5720 | 0.0193 | - | - | - | - | - | - | - |
0.4145 | 5740 | 0.021 | - | - | - | - | - | - | - |
0.4159 | 5760 | 0.0199 | - | - | - | - | - | - | - |
0.4174 | 5780 | 0.0205 | - | - | - | - | - | - | - |
0.4188 | 5800 | 0.0195 | - | - | - | - | - | - | - |
0.4202 | 5820 | 0.0195 | - | - | - | - | - | - | - |
0.4217 | 5840 | 0.0185 | - | - | - | - | - | - | - |
0.4231 | 5860 | 0.0193 | - | - | - | - | - | - | - |
0.4246 | 5880 | 0.0196 | - | - | - | - | - | - | - |
0.4260 | 5900 | 0.0191 | - | - | - | - | - | - | - |
0.4275 | 5920 | 0.0195 | - | - | - | - | - | - | - |
0.4289 | 5940 | 0.0201 | - | - | - | - | - | - | - |
0.4304 | 5960 | 0.0196 | - | - | - | - | - | - | - |
0.4318 | 5980 | 0.0204 | - | - | - | - | - | - | - |
0.4332 | 6000 | 0.0186 | 0.6559 | 0.4073 | 0.8023 | 0.5411 | 0.6544 | 0.2962 | 0.5595 |
0.4347 | 6020 | 0.0184 | - | - | - | - | - | - | - |
0.4361 | 6040 | 0.0196 | - | - | - | - | - | - | - |
0.4376 | 6060 | 0.0185 | - | - | - | - | - | - | - |
0.4390 | 6080 | 0.0196 | - | - | - | - | - | - | - |
0.4405 | 6100 | 0.0197 | - | - | - | - | - | - | - |
0.4419 | 6120 | 0.0201 | - | - | - | - | - | - | - |
0.4434 | 6140 | 0.0195 | - | - | - | - | - | - | - |
0.4448 | 6160 | 0.0188 | - | - | - | - | - | - | - |
0.4462 | 6180 | 0.0192 | - | - | - | - | - | - | - |
0.4477 | 6200 | 0.0191 | - | - | - | - | - | - | - |
0.4491 | 6220 | 0.0191 | - | - | - | - | - | - | - |
0.4506 | 6240 | 0.0193 | - | - | - | - | - | - | - |
0.4520 | 6260 | 0.0195 | - | - | - | - | - | - | - |
0.4535 | 6280 | 0.0188 | - | - | - | - | - | - | - |
0.4549 | 6300 | 0.0198 | - | - | - | - | - | - | - |
0.4564 | 6320 | 0.0192 | - | - | - | - | - | - | - |
0.4578 | 6340 | 0.0193 | - | - | - | - | - | - | - |
0.4592 | 6360 | 0.0199 | - | - | - | - | - | - | - |
0.4607 | 6380 | 0.0194 | - | - | - | - | - | - | - |
0.4621 | 6400 | 0.0207 | - | - | - | - | - | - | - |
0.4636 | 6420 | 0.0193 | - | - | - | - | - | - | - |
0.4650 | 6440 | 0.0198 | - | - | - | - | - | - | - |
0.4665 | 6460 | 0.0185 | - | - | - | - | - | - | - |
0.4679 | 6480 | 0.0205 | - | - | - | - | - | - | - |
0.4693 | 6500 | 0.0194 | 0.6413 | 0.4048 | 0.7962 | 0.5413 | 0.6646 | 0.2982 | 0.5577 |
0.4708 | 6520 | 0.0185 | - | - | - | - | - | - | - |
0.4722 | 6540 | 0.0196 | - | - | - | - | - | - | - |
0.4737 | 6560 | 0.0191 | - | - | - | - | - | - | - |
0.4751 | 6580 | 0.019 | - | - | - | - | - | - | - |
0.4766 | 6600 | 0.0195 | - | - | - | - | - | - | - |
0.4780 | 6620 | 0.0195 | - | - | - | - | - | - | - |
0.4795 | 6640 | 0.0195 | - | - | - | - | - | - | - |
0.4809 | 6660 | 0.0193 | - | - | - | - | - | - | - |
0.4823 | 6680 | 0.0193 | - | - | - | - | - | - | - |
0.4838 | 6700 | 0.0195 | - | - | - | - | - | - | - |
0.4852 | 6720 | 0.0196 | - | - | - | - | - | - | - |
0.4867 | 6740 | 0.0177 | - | - | - | - | - | - | - |
0.4881 | 6760 | 0.0181 | - | - | - | - | - | - | - |
0.4896 | 6780 | 0.0195 | - | - | - | - | - | - | - |
0.4910 | 6800 | 0.0189 | - | - | - | - | - | - | - |
0.4925 | 6820 | 0.0195 | - | - | - | - | - | - | - |
0.4939 | 6840 | 0.0183 | - | - | - | - | - | - | - |
0.4953 | 6860 | 0.0201 | - | - | - | - | - | - | - |
0.4968 | 6880 | 0.0192 | - | - | - | - | - | - | - |
0.4982 | 6900 | 0.0191 | - | - | - | - | - | - | - |
0.4997 | 6920 | 0.0194 | - | - | - | - | - | - | - |
0.5011 | 6940 | 0.0189 | - | - | - | - | - | - | - |
0.5026 | 6960 | 0.0198 | - | - | - | - | - | - | - |
0.5040 | 6980 | 0.0185 | - | - | - | - | - | - | - |
0.5055 | 7000 | 0.0197 | 0.6441 | 0.3793 | 0.7954 | 0.5223 | 0.6622 | 0.3075 | 0.5518 |
0.5069 | 7020 | 0.0196 | - | - | - | - | - | - | - |
0.5083 | 7040 | 0.0195 | - | - | - | - | - | - | - |
0.5098 | 7060 | 0.0195 | - | - | - | - | - | - | - |
0.5112 | 7080 | 0.02 | - | - | - | - | - | - | - |
0.5127 | 7100 | 0.0195 | - | - | - | - | - | - | - |
0.5141 | 7120 | 0.0194 | - | - | - | - | - | - | - |
0.5156 | 7140 | 0.019 | - | - | - | - | - | - | - |
0.5170 | 7160 | 0.0201 | - | - | - | - | - | - | - |
0.5184 | 7180 | 0.0184 | - | - | - | - | - | - | - |
0.5199 | 7200 | 0.0188 | - | - | - | - | - | - | - |
0.5213 | 7220 | 0.0201 | - | - | - | - | - | - | - |
0.5228 | 7240 | 0.0182 | - | - | - | - | - | - | - |
0.5242 | 7260 | 0.0195 | - | - | - | - | - | - | - |
0.5257 | 7280 | 0.019 | - | - | - | - | - | - | - |
0.5271 | 7300 | 0.019 | - | - | - | - | - | - | - |
0.5286 | 7320 | 0.0185 | - | - | - | - | - | - | - |
0.5300 | 7340 | 0.0189 | - | - | - | - | - | - | - |
0.5314 | 7360 | 0.0188 | - | - | - | - | - | - | - |
0.5329 | 7380 | 0.0187 | - | - | - | - | - | - | - |
0.5343 | 7400 | 0.0179 | - | - | - | - | - | - | - |
0.5358 | 7420 | 0.0191 | - | - | - | - | - | - | - |
0.5372 | 7440 | 0.0187 | - | - | - | - | - | - | - |
0.5387 | 7460 | 0.0181 | - | - | - | - | - | - | - |
0.5401 | 7480 | 0.0191 | - | - | - | - | - | - | - |
0.5416 | 7500 | 0.0176 | 0.6409 | 0.3827 | 0.7882 | 0.5272 | 0.6503 | 0.2934 | 0.5471 |
0.5430 | 7520 | 0.0203 | - | - | - | - | - | - | - |
0.5444 | 7540 | 0.0184 | - | - | - | - | - | - | - |
0.5459 | 7560 | 0.019 | - | - | - | - | - | - | - |
0.5473 | 7580 | 0.019 | - | - | - | - | - | - | - |
0.5488 | 7600 | 0.0194 | - | - | - | - | - | - | - |
0.5502 | 7620 | 0.0187 | - | - | - | - | - | - | - |
0.5517 | 7640 | 0.0185 | - | - | - | - | - | - | - |
0.5531 | 7660 | 0.0194 | - | - | - | - | - | - | - |
0.5546 | 7680 | 0.0192 | - | - | - | - | - | - | - |
0.5560 | 7700 | 0.0191 | - | - | - | - | - | - | - |
0.5574 | 7720 | 0.0178 | - | - | - | - | - | - | - |
0.5589 | 7740 | 0.0181 | - | - | - | - | - | - | - |
0.5603 | 7760 | 0.0186 | - | - | - | - | - | - | - |
0.5618 | 7780 | 0.0184 | - | - | - | - | - | - | - |
0.5632 | 7800 | 0.0189 | - | - | - | - | - | - | - |
0.5647 | 7820 | 0.0189 | - | - | - | - | - | - | - |
0.5661 | 7840 | 0.0189 | - | - | - | - | - | - | - |
0.5676 | 7860 | 0.0186 | - | - | - | - | - | - | - |
0.5690 | 7880 | 0.018 | - | - | - | - | - | - | - |
0.5704 | 7900 | 0.0186 | - | - | - | - | - | - | - |
0.5719 | 7920 | 0.0187 | - | - | - | - | - | - | - |
0.5733 | 7940 | 0.0189 | - | - | - | - | - | - | - |
0.5748 | 7960 | 0.0198 | - | - | - | - | - | - | - |
0.5762 | 7980 | 0.0191 | - | - | - | - | - | - | - |
0.5777 | 8000 | 0.0177 | 0.6439 | 0.3972 | 0.7947 | 0.5342 | 0.6556 | 0.2936 | 0.5532 |
0.5791 | 8020 | 0.0197 | - | - | - | - | - | - | - |
0.5805 | 8040 | 0.0195 | - | - | - | - | - | - | - |
0.5820 | 8060 | 0.0185 | - | - | - | - | - | - | - |
0.5834 | 8080 | 0.0191 | - | - | - | - | - | - | - |
0.5849 | 8100 | 0.0187 | - | - | - | - | - | - | - |
0.5863 | 8120 | 0.0182 | - | - | - | - | - | - | - |
0.5878 | 8140 | 0.0181 | - | - | - | - | - | - | - |
0.5892 | 8160 | 0.019 | - | - | - | - | - | - | - |
0.5907 | 8180 | 0.0189 | - | - | - | - | - | - | - |
0.5921 | 8200 | 0.0197 | - | - | - | - | - | - | - |
0.5935 | 8220 | 0.0183 | - | - | - | - | - | - | - |
0.5950 | 8240 | 0.0191 | - | - | - | - | - | - | - |
0.5964 | 8260 | 0.0188 | - | - | - | - | - | - | - |
0.5979 | 8280 | 0.0195 | - | - | - | - | - | - | - |
0.5993 | 8300 | 0.0191 | - | - | - | - | - | - | - |
0.6008 | 8320 | 0.0185 | - | - | - | - | - | - | - |
0.6022 | 8340 | 0.0185 | - | - | - | - | - | - | - |
0.6037 | 8360 | 0.0186 | - | - | - | - | - | - | - |
0.6051 | 8380 | 0.0178 | - | - | - | - | - | - | - |
0.6065 | 8400 | 0.0182 | - | - | - | - | - | - | - |
0.6080 | 8420 | 0.0196 | - | - | - | - | - | - | - |
0.6094 | 8440 | 0.019 | - | - | - | - | - | - | - |
0.6109 | 8460 | 0.0198 | - | - | - | - | - | - | - |
0.6123 | 8480 | 0.0188 | - | - | - | - | - | - | - |
0.6138 | 8500 | 0.0192 | 0.6490 | 0.3983 | 0.7778 | 0.5157 | 0.6601 | 0.2980 | 0.5498 |
0.6152 | 8520 | 0.0186 | - | - | - | - | - | - | - |
0.6167 | 8540 | 0.0194 | - | - | - | - | - | - | - |
0.6181 | 8560 | 0.0188 | - | - | - | - | - | - | - |
0.6195 | 8580 | 0.0193 | - | - | - | - | - | - | - |
0.6210 | 8600 | 0.0185 | - | - | - | - | - | - | - |
0.6224 | 8620 | 0.0194 | - | - | - | - | - | - | - |
0.6239 | 8640 | 0.0187 | - | - | - | - | - | - | - |
0.6253 | 8660 | 0.0194 | - | - | - | - | - | - | - |
0.6268 | 8680 | 0.018 | - | - | - | - | - | - | - |
0.6282 | 8700 | 0.0182 | - | - | - | - | - | - | - |
0.6296 | 8720 | 0.0191 | - | - | - | - | - | - | - |
0.6311 | 8740 | 0.0179 | - | - | - | - | - | - | - |
0.6325 | 8760 | 0.0191 | - | - | - | - | - | - | - |
0.6340 | 8780 | 0.0197 | - | - | - | - | - | - | - |
0.6354 | 8800 | 0.0188 | - | - | - | - | - | - | - |
0.6369 | 8820 | 0.0188 | - | - | - | - | - | - | - |
0.6383 | 8840 | 0.018 | - | - | - | - | - | - | - |
0.6398 | 8860 | 0.0188 | - | - | - | - | - | - | - |
0.6412 | 8880 | 0.0193 | - | - | - | - | - | - | - |
0.6426 | 8900 | 0.0181 | - | - | - | - | - | - | - |
0.6441 | 8920 | 0.0187 | - | - | - | - | - | - | - |
0.6455 | 8940 | 0.0187 | - | - | - | - | - | - | - |
0.6470 | 8960 | 0.0183 | - | - | - | - | - | - | - |
0.6484 | 8980 | 0.0189 | - | - | - | - | - | - | - |
0.6499 | 9000 | 0.0186 | 0.6369 | 0.4054 | 0.7856 | 0.5233 | 0.6619 | 0.2899 | 0.5505 |
0.6513 | 9020 | 0.0187 | - | - | - | - | - | - | - |
0.6528 | 9040 | 0.0192 | - | - | - | - | - | - | - |
0.6542 | 9060 | 0.0188 | - | - | - | - | - | - | - |
0.6556 | 9080 | 0.0192 | - | - | - | - | - | - | - |
0.6571 | 9100 | 0.0182 | - | - | - | - | - | - | - |
0.6585 | 9120 | 0.019 | - | - | - | - | - | - | - |
0.6600 | 9140 | 0.0181 | - | - | - | - | - | - | - |
0.6614 | 9160 | 0.0182 | - | - | - | - | - | - | - |
0.6629 | 9180 | 0.0191 | - | - | - | - | - | - | - |
0.6643 | 9200 | 0.0183 | - | - | - | - | - | - | - |
0.6658 | 9220 | 0.019 | - | - | - | - | - | - | - |
0.6672 | 9240 | 0.019 | - | - | - | - | - | - | - |
0.6686 | 9260 | 0.0184 | - | - | - | - | - | - | - |
0.6701 | 9280 | 0.0187 | - | - | - | - | - | - | - |
0.6715 | 9300 | 0.0182 | - | - | - | - | - | - | - |
0.6730 | 9320 | 0.0191 | - | - | - | - | - | - | - |
0.6744 | 9340 | 0.0187 | - | - | - | - | - | - | - |
0.6759 | 9360 | 0.0194 | - | - | - | - | - | - | - |
0.6773 | 9380 | 0.0196 | - | - | - | - | - | - | - |
0.6787 | 9400 | 0.0181 | - | - | - | - | - | - | - |
0.6802 | 9420 | 0.0188 | - | - | - | - | - | - | - |
0.6816 | 9440 | 0.0189 | - | - | - | - | - | - | - |
0.6831 | 9460 | 0.0189 | - | - | - | - | - | - | - |
0.6845 | 9480 | 0.0183 | - | - | - | - | - | - | - |
0.6860 | 9500 | 0.0196 | 0.6380 | 0.3851 | 0.7799 | 0.5238 | 0.6547 | 0.2905 | 0.5453 |
0.6874 | 9520 | 0.0181 | - | - | - | - | - | - | - |
0.6889 | 9540 | 0.0177 | - | - | - | - | - | - | - |
0.6903 | 9560 | 0.0188 | - | - | - | - | - | - | - |
0.6917 | 9580 | 0.0188 | - | - | - | - | - | - | - |
0.6932 | 9600 | 0.018 | - | - | - | - | - | - | - |
0.6946 | 9620 | 0.0194 | - | - | - | - | - | - | - |
0.6961 | 9640 | 0.0183 | - | - | - | - | - | - | - |
0.6975 | 9660 | 0.0188 | - | - | - | - | - | - | - |
0.6990 | 9680 | 0.0172 | - | - | - | - | - | - | - |
0.7004 | 9700 | 0.02 | - | - | - | - | - | - | - |
0.7019 | 9720 | 0.0182 | - | - | - | - | - | - | - |
0.7033 | 9740 | 0.019 | - | - | - | - | - | - | - |
0.7047 | 9760 | 0.0184 | - | - | - | - | - | - | - |
0.7062 | 9780 | 0.0182 | - | - | - | - | - | - | - |
0.7076 | 9800 | 0.0197 | - | - | - | - | - | - | - |
0.7091 | 9820 | 0.0183 | - | - | - | - | - | - | - |
0.7105 | 9840 | 0.0187 | - | - | - | - | - | - | - |
0.7120 | 9860 | 0.0188 | - | - | - | - | - | - | - |
0.7134 | 9880 | 0.0191 | - | - | - | - | - | - | - |
0.7149 | 9900 | 0.0181 | - | - | - | - | - | - | - |
0.7163 | 9920 | 0.0187 | - | - | - | - | - | - | - |
0.7177 | 9940 | 0.0184 | - | - | - | - | - | - | - |
0.7192 | 9960 | 0.018 | - | - | - | - | - | - | - |
0.7206 | 9980 | 0.0195 | - | - | - | - | - | - | - |
0.7221 | 10000 | 0.0185 | 0.6482 | 0.3947 | 0.7846 | 0.5298 | 0.6606 | 0.2917 | 0.5516 |
0.7235 | 10020 | 0.0195 | - | - | - | - | - | - | - |
0.7250 | 10040 | 0.019 | - | - | - | - | - | - | - |
0.7264 | 10060 | 0.0191 | - | - | - | - | - | - | - |
0.7279 | 10080 | 0.0187 | - | - | - | - | - | - | - |
0.7293 | 10100 | 0.0181 | - | - | - | - | - | - | - |
0.7307 | 10120 | 0.0181 | - | - | - | - | - | - | - |
0.7322 | 10140 | 0.0186 | - | - | - | - | - | - | - |
0.7336 | 10160 | 0.0174 | - | - | - | - | - | - | - |
0.7351 | 10180 | 0.0194 | - | - | - | - | - | - | - |
0.7365 | 10200 | 0.0177 | - | - | - | - | - | - | - |
0.7380 | 10220 | 0.0193 | - | - | - | - | - | - | - |
0.7394 | 10240 | 0.0189 | - | - | - | - | - | - | - |
0.7408 | 10260 | 0.0184 | - | - | - | - | - | - | - |
0.7423 | 10280 | 0.0184 | - | - | - | - | - | - | - |
0.7437 | 10300 | 0.0185 | - | - | - | - | - | - | - |
0.7452 | 10320 | 0.018 | - | - | - | - | - | - | - |
0.7466 | 10340 | 0.0186 | - | - | - | - | - | - | - |
0.7481 | 10360 | 0.0177 | - | - | - | - | - | - | - |
0.7495 | 10380 | 0.0192 | - | - | - | - | - | - | - |
0.7510 | 10400 | 0.0183 | - | - | - | - | - | - | - |
0.7524 | 10420 | 0.0193 | - | - | - | - | - | - | - |
0.7538 | 10440 | 0.019 | - | - | - | - | - | - | - |
0.7553 | 10460 | 0.0179 | - | - | - | - | - | - | - |
0.7567 | 10480 | 0.0181 | - | - | - | - | - | - | - |
0.7582 | 10500 | 0.0189 | 0.6356 | 0.4051 | 0.7820 | 0.5329 | 0.6592 | 0.2945 | 0.5516 |
0.7596 | 10520 | 0.0192 | - | - | - | - | - | - | - |
0.7611 | 10540 | 0.0183 | - | - | - | - | - | - | - |
0.7625 | 10560 | 0.0187 | - | - | - | - | - | - | - |
0.7640 | 10580 | 0.0186 | - | - | - | - | - | - | - |
0.7654 | 10600 | 0.0187 | - | - | - | - | - | - | - |
0.7668 | 10620 | 0.0191 | - | - | - | - | - | - | - |
0.7683 | 10640 | 0.0181 | - | - | - | - | - | - | - |
0.7697 | 10660 | 0.0186 | - | - | - | - | - | - | - |
0.7712 | 10680 | 0.0193 | - | - | - | - | - | - | - |
0.7726 | 10700 | 0.0185 | - | - | - | - | - | - | - |
0.7741 | 10720 | 0.0181 | - | - | - | - | - | - | - |
0.7755 | 10740 | 0.0186 | - | - | - | - | - | - | - |
0.7770 | 10760 | 0.019 | - | - | - | - | - | - | - |
0.7784 | 10780 | 0.0172 | - | - | - | - | - | - | - |
0.7798 | 10800 | 0.0192 | - | - | - | - | - | - | - |
0.7813 | 10820 | 0.0183 | - | - | - | - | - | - | - |
0.7827 | 10840 | 0.0186 | - | - | - | - | - | - | - |
0.7842 | 10860 | 0.0191 | - | - | - | - | - | - | - |
0.7856 | 10880 | 0.0184 | - | - | - | - | - | - | - |
0.7871 | 10900 | 0.0188 | - | - | - | - | - | - | - |
0.7885 | 10920 | 0.0183 | - | - | - | - | - | - | - |
0.7899 | 10940 | 0.0178 | - | - | - | - | - | - | - |
0.7914 | 10960 | 0.0182 | - | - | - | - | - | - | - |
0.7928 | 10980 | 0.0177 | - | - | - | - | - | - | - |
0.7943 | 11000 | 0.0187 | 0.6390 | 0.4119 | 0.7876 | 0.5334 | 0.6384 | 0.2980 | 0.5514 |
0.7957 | 11020 | 0.0186 | - | - | - | - | - | - | - |
0.7972 | 11040 | 0.0186 | - | - | - | - | - | - | - |
0.7986 | 11060 | 0.0183 | - | - | - | - | - | - | - |
0.8001 | 11080 | 0.0179 | - | - | - | - | - | - | - |
0.8015 | 11100 | 0.0188 | - | - | - | - | - | - | - |
0.8029 | 11120 | 0.0186 | - | - | - | - | - | - | - |
0.8044 | 11140 | 0.0176 | - | - | - | - | - | - | - |
0.8058 | 11160 | 0.0185 | - | - | - | - | - | - | - |
0.8073 | 11180 | 0.0187 | - | - | - | - | - | - | - |
0.8087 | 11200 | 0.0179 | - | - | - | - | - | - | - |
0.8102 | 11220 | 0.0178 | - | - | - | - | - | - | - |
0.8116 | 11240 | 0.0186 | - | - | - | - | - | - | - |
0.8131 | 11260 | 0.0179 | - | - | - | - | - | - | - |
0.8145 | 11280 | 0.0181 | - | - | - | - | - | - | - |
0.8159 | 11300 | 0.0191 | - | - | - | - | - | - | - |
0.8174 | 11320 | 0.0187 | - | - | - | - | - | - | - |
0.8188 | 11340 | 0.0185 | - | - | - | - | - | - | - |
0.8203 | 11360 | 0.0178 | - | - | - | - | - | - | - |
0.8217 | 11380 | 0.018 | - | - | - | - | - | - | - |
0.8232 | 11400 | 0.0182 | - | - | - | - | - | - | - |
0.8246 | 11420 | 0.018 | - | - | - | - | - | - | - |
0.8261 | 11440 | 0.018 | - | - | - | - | - | - | - |
0.8275 | 11460 | 0.0184 | - | - | - | - | - | - | - |
0.8289 | 11480 | 0.0175 | - | - | - | - | - | - | - |
0.8304 | 11500 | 0.0181 | 0.6360 | 0.4185 | 0.7888 | 0.5268 | 0.6678 | 0.2930 | 0.5552 |
0.8318 | 11520 | 0.0176 | - | - | - | - | - | - | - |
0.8333 | 11540 | 0.0183 | - | - | - | - | - | - | - |
0.8347 | 11560 | 0.0182 | - | - | - | - | - | - | - |
0.8362 | 11580 | 0.0189 | - | - | - | - | - | - | - |
0.8376 | 11600 | 0.0188 | - | - | - | - | - | - | - |
0.8390 | 11620 | 0.0182 | - | - | - | - | - | - | - |
0.8405 | 11640 | 0.0189 | - | - | - | - | - | - | - |
0.8419 | 11660 | 0.0181 | - | - | - | - | - | - | - |
0.8434 | 11680 | 0.0178 | - | - | - | - | - | - | - |
0.8448 | 11700 | 0.0183 | - | - | - | - | - | - | - |
0.8463 | 11720 | 0.018 | - | - | - | - | - | - | - |
0.8477 | 11740 | 0.0181 | - | - | - | - | - | - | - |
0.8492 | 11760 | 0.0182 | - | - | - | - | - | - | - |
0.8506 | 11780 | 0.0192 | - | - | - | - | - | - | - |
0.8520 | 11800 | 0.0188 | - | - | - | - | - | - | - |
0.8535 | 11820 | 0.0188 | - | - | - | - | - | - | - |
0.8549 | 11840 | 0.018 | - | - | - | - | - | - | - |
0.8564 | 11860 | 0.0179 | - | - | - | - | - | - | - |
0.8578 | 11880 | 0.0174 | - | - | - | - | - | - | - |
0.8593 | 11900 | 0.018 | - | - | - | - | - | - | - |
0.8607 | 11920 | 0.0176 | - | - | - | - | - | - | - |
0.8622 | 11940 | 0.0175 | - | - | - | - | - | - | - |
0.8636 | 11960 | 0.0187 | - | - | - | - | - | - | - |
0.8650 | 11980 | 0.0182 | - | - | - | - | - | - | - |
0.8665 | 12000 | 0.0185 | 0.6476 | 0.4064 | 0.8021 | 0.5229 | 0.6482 | 0.2936 | 0.5535 |
0.8679 | 12020 | 0.0191 | - | - | - | - | - | - | - |
0.8694 | 12040 | 0.0188 | - | - | - | - | - | - | - |
0.8708 | 12060 | 0.0177 | - | - | - | - | - | - | - |
0.8723 | 12080 | 0.0188 | - | - | - | - | - | - | - |
0.8737 | 12100 | 0.018 | - | - | - | - | - | - | - |
0.8752 | 12120 | 0.0177 | - | - | - | - | - | - | - |
0.8766 | 12140 | 0.0184 | - | - | - | - | - | - | - |
0.8780 | 12160 | 0.0199 | - | - | - | - | - | - | - |
0.8795 | 12180 | 0.0182 | - | - | - | - | - | - | - |
0.8809 | 12200 | 0.0182 | - | - | - | - | - | - | - |
0.8824 | 12220 | 0.0189 | - | - | - | - | - | - | - |
0.8838 | 12240 | 0.0189 | - | - | - | - | - | - | - |
0.8853 | 12260 | 0.0184 | - | - | - | - | - | - | - |
0.8867 | 12280 | 0.0178 | - | - | - | - | - | - | - |
0.8882 | 12300 | 0.0179 | - | - | - | - | - | - | - |
0.8896 | 12320 | 0.0177 | - | - | - | - | - | - | - |
0.8910 | 12340 | 0.0185 | - | - | - | - | - | - | - |
0.8925 | 12360 | 0.0181 | - | - | - | - | - | - | - |
0.8939 | 12380 | 0.0183 | - | - | - | - | - | - | - |
0.8954 | 12400 | 0.018 | - | - | - | - | - | - | - |
0.8968 | 12420 | 0.0176 | - | - | - | - | - | - | - |
0.8983 | 12440 | 0.0186 | - | - | - | - | - | - | - |
0.8997 | 12460 | 0.0184 | - | - | - | - | - | - | - |
0.9011 | 12480 | 0.0193 | - | - | - | - | - | - | - |
0.9026 | 12500 | 0.018 | 0.6434 | 0.4223 | 0.8035 | 0.5354 | 0.6496 | 0.2928 | 0.5578 |
0.9040 | 12520 | 0.0183 | - | - | - | - | - | - | - |
0.9055 | 12540 | 0.0188 | - | - | - | - | - | - | - |
0.9069 | 12560 | 0.0178 | - | - | - | - | - | - | - |
0.9084 | 12580 | 0.0187 | - | - | - | - | - | - | - |
0.9098 | 12600 | 0.019 | - | - | - | - | - | - | - |
0.9113 | 12620 | 0.0177 | - | - | - | - | - | - | - |
0.9127 | 12640 | 0.0185 | - | - | - | - | - | - | - |
0.9141 | 12660 | 0.0176 | - | - | - | - | - | - | - |
0.9156 | 12680 | 0.0185 | - | - | - | - | - | - | - |
0.9170 | 12700 | 0.0188 | - | - | - | - | - | - | - |
0.9185 | 12720 | 0.0177 | - | - | - | - | - | - | - |
0.9199 | 12740 | 0.0174 | - | - | - | - | - | - | - |
0.9214 | 12760 | 0.0183 | - | - | - | - | - | - | - |
0.9228 | 12780 | 0.0196 | - | - | - | - | - | - | - |
0.9243 | 12800 | 0.0185 | - | - | - | - | - | - | - |
0.9257 | 12820 | 0.0178 | - | - | - | - | - | - | - |
0.9271 | 12840 | 0.0187 | - | - | - | - | - | - | - |
0.9286 | 12860 | 0.0184 | - | - | - | - | - | - | - |
0.9300 | 12880 | 0.0187 | - | - | - | - | - | - | - |
0.9315 | 12900 | 0.0178 | - | - | - | - | - | - | - |
0.9329 | 12920 | 0.0186 | - | - | - | - | - | - | - |
0.9344 | 12940 | 0.0193 | - | - | - | - | - | - | - |
0.9358 | 12960 | 0.0181 | - | - | - | - | - | - | - |
0.9373 | 12980 | 0.0182 | - | - | - | - | - | - | - |
0.9387 | 13000 | 0.0184 | 0.6505 | 0.4242 | 0.8013 | 0.5332 | 0.6408 | 0.2964 | 0.5577 |
0.9401 | 13020 | 0.0184 | - | - | - | - | - | - | - |
0.9416 | 13040 | 0.019 | - | - | - | - | - | - | - |
0.9430 | 13060 | 0.0177 | - | - | - | - | - | - | - |
0.9445 | 13080 | 0.0182 | - | - | - | - | - | - | - |
0.9459 | 13100 | 0.0183 | - | - | - | - | - | - | - |
0.9474 | 13120 | 0.0176 | - | - | - | - | - | - | - |
0.9488 | 13140 | 0.0178 | - | - | - | - | - | - | - |
0.9502 | 13160 | 0.0183 | - | - | - | - | - | - | - |
0.9517 | 13180 | 0.0187 | - | - | - | - | - | - | - |
0.9531 | 13200 | 0.0177 | - | - | - | - | - | - | - |
0.9546 | 13220 | 0.0185 | - | - | - | - | - | - | - |
0.9560 | 13240 | 0.0192 | - | - | - | - | - | - | - |
0.9575 | 13260 | 0.0183 | - | - | - | - | - | - | - |
0.9589 | 13280 | 0.0177 | - | - | - | - | - | - | - |
0.9604 | 13300 | 0.0185 | - | - | - | - | - | - | - |
0.9618 | 13320 | 0.0173 | - | - | - | - | - | - | - |
0.9632 | 13340 | 0.0175 | - | - | - | - | - | - | - |
0.9647 | 13360 | 0.0189 | - | - | - | - | - | - | - |
0.9661 | 13380 | 0.0181 | - | - | - | - | - | - | - |
0.9676 | 13400 | 0.0186 | - | - | - | - | - | - | - |
0.9690 | 13420 | 0.0177 | - | - | - | - | - | - | - |
0.9705 | 13440 | 0.0186 | - | - | - | - | - | - | - |
0.9719 | 13460 | 0.0185 | - | - | - | - | - | - | - |
0.9734 | 13480 | 0.0183 | - | - | - | - | - | - | - |
0.9748 | 13500 | 0.0193 | 0.6463 | 0.4256 | 0.8032 | 0.5340 | 0.6405 | 0.2994 | 0.5582 |
0.9762 | 13520 | 0.0177 | - | - | - | - | - | - | - |
0.9777 | 13540 | 0.0182 | - | - | - | - | - | - | - |
0.9791 | 13560 | 0.0177 | - | - | - | - | - | - | - |
0.9806 | 13580 | 0.0181 | - | - | - | - | - | - | - |
0.9820 | 13600 | 0.0182 | - | - | - | - | - | - | - |
0.9835 | 13620 | 0.0186 | - | - | - | - | - | - | - |
0.9849 | 13640 | 0.018 | - | - | - | - | - | - | - |
0.9864 | 13660 | 0.0181 | - | - | - | - | - | - | - |
0.9878 | 13680 | 0.0178 | - | - | - | - | - | - | - |
0.9892 | 13700 | 0.0179 | - | - | - | - | - | - | - |
0.9907 | 13720 | 0.0181 | - | - | - | - | - | - | - |
0.9921 | 13740 | 0.0181 | - | - | - | - | - | - | - |
0.9936 | 13760 | 0.0184 | - | - | - | - | - | - | - |
0.9950 | 13780 | 0.0183 | - | - | - | - | - | - | - |
0.9965 | 13800 | 0.0196 | - | - | - | - | - | - | - |
0.9979 | 13820 | 0.0177 | - | - | - | - | - | - | - |
0.9994 | 13840 | 0.0181 | - | - | - | - | - | - | - |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.0.2
- PyLate: 1.2.0
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
PyLate
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
- Downloads last month
- 4
Model tree for Speedsy/turkish-multilingual-e5-small-32768-colbert-cleaned-data-32bsize-13849
Base model
Speedsy/turkish-multilingual-e5-small-32768Evaluation results
- Maxsim Accuracy@1 on NanoDBPediaself-reported0.820
- Maxsim Accuracy@3 on NanoDBPediaself-reported0.920
- Maxsim Accuracy@5 on NanoDBPediaself-reported0.940
- Maxsim Accuracy@10 on NanoDBPediaself-reported0.980
- Maxsim Precision@1 on NanoDBPediaself-reported0.820
- Maxsim Precision@3 on NanoDBPediaself-reported0.633
- Maxsim Precision@5 on NanoDBPediaself-reported0.572
- Maxsim Precision@10 on NanoDBPediaself-reported0.512
- Maxsim Recall@1 on NanoDBPediaself-reported0.103
- Maxsim Recall@3 on NanoDBPediaself-reported0.205