PyLate model based on Speedsy/turkish-multilingual-e5-small-32768

This is a PyLate model finetuned from Speedsy/turkish-multilingual-e5-small-32768 on the train dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Metrics

Py Late Information Retrieval

  • Dataset: ['NanoDBPedia', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNQ', 'NanoSCIDOCS']
  • Evaluated with pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
Metric NanoDBPedia NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNQ NanoSCIDOCS
MaxSim_accuracy@1 0.84 0.3 0.86 0.42 0.64 0.38
MaxSim_accuracy@3 0.92 0.48 0.94 0.58 0.7 0.56
MaxSim_accuracy@5 0.96 0.52 0.98 0.62 0.74 0.64
MaxSim_accuracy@10 0.98 0.64 0.98 0.64 0.8 0.76
MaxSim_precision@1 0.84 0.3 0.86 0.42 0.64 0.38
MaxSim_precision@3 0.6467 0.2133 0.5067 0.1933 0.24 0.2667
MaxSim_precision@5 0.584 0.16 0.32 0.124 0.152 0.208
MaxSim_precision@10 0.512 0.102 0.172 0.064 0.084 0.152
MaxSim_recall@1 0.116 0.1662 0.43 0.42 0.61 0.0797
MaxSim_recall@3 0.1884 0.3088 0.76 0.58 0.67 0.1637
MaxSim_recall@5 0.2566 0.3576 0.8 0.62 0.71 0.2127
MaxSim_recall@10 0.357 0.4791 0.86 0.64 0.76 0.3097
MaxSim_ndcg@10 0.6504 0.3674 0.8136 0.5392 0.69 0.3034
MaxSim_mrr@10 0.8833 0.4061 0.899 0.5057 0.6854 0.5
MaxSim_map@100 0.5036 0.3021 0.7513 0.5212 0.6664 0.2294

Pylate Custom Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with pylate_nano_beir_evaluator.PylateCustomNanoBEIREvaluator
Metric Value
MaxSim_accuracy@1 0.5733
MaxSim_accuracy@3 0.6967
MaxSim_accuracy@5 0.7433
MaxSim_accuracy@10 0.8
MaxSim_precision@1 0.5733
MaxSim_precision@3 0.3444
MaxSim_precision@5 0.258
MaxSim_precision@10 0.181
MaxSim_recall@1 0.3036
MaxSim_recall@3 0.4451
MaxSim_recall@5 0.4928
MaxSim_recall@10 0.5676
MaxSim_ndcg@10 0.5607
MaxSim_mrr@10 0.6466
MaxSim_map@100 0.4957

Training Details

Training Dataset

train

  • Dataset: train at 1072b6b
  • Size: 443,147 training samples
  • Columns: query_id, document_ids, and scores
  • Approximate statistics based on the first 1000 samples:
    query_id document_ids scores
    type string list list
    details
    • min: 5 tokens
    • mean: 5.83 tokens
    • max: 6 tokens
    • size: 32 elements
    • size: 32 elements
  • Samples:
    query_id document_ids scores
    817836 ['2716076', '6741935', '2681109', '5562684', '3507339', ...] [1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]
    1045170 ['5088671', '2953295', '8783471', '4268439', '6339935', ...] [1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]
    1069432 ['3724008', '314949', '8657336', '7420456', '879004', ...] [1.0, 0.3706032931804657, 0.3508036434650421, 0.2823200523853302, 0.17563475668430328, ...]
  • Loss: pylate.losses.distillation.Distillation

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • learning_rate: 3e-05
  • num_train_epochs: 1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss NanoDBPedia_MaxSim_ndcg@10 NanoFiQA2018_MaxSim_ndcg@10 NanoHotpotQA_MaxSim_ndcg@10 NanoMSMARCO_MaxSim_ndcg@10 NanoNQ_MaxSim_ndcg@10 NanoSCIDOCS_MaxSim_ndcg@10 NanoBEIR_mean_MaxSim_ndcg@10
0.0007 20 0.0324 - - - - - - -
0.0014 40 0.0293 - - - - - - -
0.0022 60 0.0296 - - - - - - -
0.0029 80 0.0282 - - - - - - -
0.0036 100 0.0298 - - - - - - -
0.0043 120 0.0281 - - - - - - -
0.0051 140 0.0285 - - - - - - -
0.0058 160 0.0275 - - - - - - -
0.0065 180 0.0289 - - - - - - -
0.0072 200 0.0276 - - - - - - -
0.0079 220 0.0276 - - - - - - -
0.0087 240 0.0269 - - - - - - -
0.0094 260 0.0248 - - - - - - -
0.0101 280 0.0254 - - - - - - -
0.0108 300 0.0248 - - - - - - -
0.0116 320 0.0248 - - - - - - -
0.0123 340 0.0246 - - - - - - -
0.0130 360 0.0257 - - - - - - -
0.0137 380 0.0243 - - - - - - -
0.0144 400 0.025 - - - - - - -
0.0152 420 0.0243 - - - - - - -
0.0159 440 0.0247 - - - - - - -
0.0166 460 0.0261 - - - - - - -
0.0173 480 0.0232 - - - - - - -
0.0181 500 0.0239 0.6474 0.3140 0.7666 0.5267 0.6014 0.2568 0.5188
0.0188 520 0.0251 - - - - - - -
0.0195 540 0.0242 - - - - - - -
0.0202 560 0.0243 - - - - - - -
0.0209 580 0.0238 - - - - - - -
0.0217 600 0.0228 - - - - - - -
0.0224 620 0.0243 - - - - - - -
0.0231 640 0.0228 - - - - - - -
0.0238 660 0.0237 - - - - - - -
0.0246 680 0.0239 - - - - - - -
0.0253 700 0.0238 - - - - - - -
0.0260 720 0.0248 - - - - - - -
0.0267 740 0.0234 - - - - - - -
0.0274 760 0.0242 - - - - - - -
0.0282 780 0.0238 - - - - - - -
0.0289 800 0.0224 - - - - - - -
0.0296 820 0.0237 - - - - - - -
0.0303 840 0.0238 - - - - - - -
0.0311 860 0.0234 - - - - - - -
0.0318 880 0.0238 - - - - - - -
0.0325 900 0.023 - - - - - - -
0.0332 920 0.0239 - - - - - - -
0.0339 940 0.0232 - - - - - - -
0.0347 960 0.0239 - - - - - - -
0.0354 980 0.0239 - - - - - - -
0.0361 1000 0.0241 0.6389 0.3160 0.7573 0.5378 0.5876 0.2993 0.5228
0.0368 1020 0.0234 - - - - - - -
0.0375 1040 0.0229 - - - - - - -
0.0383 1060 0.0236 - - - - - - -
0.0390 1080 0.0232 - - - - - - -
0.0397 1100 0.0236 - - - - - - -
0.0404 1120 0.0236 - - - - - - -
0.0412 1140 0.022 - - - - - - -
0.0419 1160 0.0217 - - - - - - -
0.0426 1180 0.0233 - - - - - - -
0.0433 1200 0.0234 - - - - - - -
0.0440 1220 0.0233 - - - - - - -
0.0448 1240 0.0235 - - - - - - -
0.0455 1260 0.0242 - - - - - - -
0.0462 1280 0.0236 - - - - - - -
0.0469 1300 0.023 - - - - - - -
0.0477 1320 0.0233 - - - - - - -
0.0484 1340 0.0232 - - - - - - -
0.0491 1360 0.0225 - - - - - - -
0.0498 1380 0.0215 - - - - - - -
0.0505 1400 0.0212 - - - - - - -
0.0513 1420 0.0222 - - - - - - -
0.0520 1440 0.0229 - - - - - - -
0.0527 1460 0.0225 - - - - - - -
0.0534 1480 0.0249 - - - - - - -
0.0542 1500 0.0234 0.6643 0.3292 0.7842 0.5483 0.6179 0.2975 0.5402
0.0549 1520 0.0236 - - - - - - -
0.0556 1540 0.021 - - - - - - -
0.0563 1560 0.0226 - - - - - - -
0.0570 1580 0.0236 - - - - - - -
0.0578 1600 0.0208 - - - - - - -
0.0585 1620 0.0216 - - - - - - -
0.0592 1640 0.0231 - - - - - - -
0.0599 1660 0.0225 - - - - - - -
0.0607 1680 0.0219 - - - - - - -
0.0614 1700 0.0213 - - - - - - -
0.0621 1720 0.0223 - - - - - - -
0.0628 1740 0.0234 - - - - - - -
0.0635 1760 0.0217 - - - - - - -
0.0643 1780 0.023 - - - - - - -
0.0650 1800 0.0231 - - - - - - -
0.0657 1820 0.0224 - - - - - - -
0.0664 1840 0.0229 - - - - - - -
0.0672 1860 0.0221 - - - - - - -
0.0679 1880 0.0221 - - - - - - -
0.0686 1900 0.0228 - - - - - - -
0.0693 1920 0.0217 - - - - - - -
0.0700 1940 0.024 - - - - - - -
0.0708 1960 0.0232 - - - - - - -
0.0715 1980 0.023 - - - - - - -
0.0722 2000 0.0232 0.6557 0.3446 0.7881 0.5640 0.6351 0.2824 0.5450
0.0729 2020 0.0229 - - - - - - -
0.0737 2040 0.0221 - - - - - - -
0.0744 2060 0.0221 - - - - - - -
0.0751 2080 0.0222 - - - - - - -
0.0758 2100 0.0223 - - - - - - -
0.0765 2120 0.0237 - - - - - - -
0.0773 2140 0.0227 - - - - - - -
0.0780 2160 0.0233 - - - - - - -
0.0787 2180 0.0228 - - - - - - -
0.0794 2200 0.0213 - - - - - - -
0.0802 2220 0.0222 - - - - - - -
0.0809 2240 0.0231 - - - - - - -
0.0816 2260 0.0225 - - - - - - -
0.0823 2280 0.0234 - - - - - - -
0.0830 2300 0.0222 - - - - - - -
0.0838 2320 0.0225 - - - - - - -
0.0845 2340 0.0224 - - - - - - -
0.0852 2360 0.0217 - - - - - - -
0.0859 2380 0.0217 - - - - - - -
0.0867 2400 0.0228 - - - - - - -
0.0874 2420 0.0228 - - - - - - -
0.0881 2440 0.0229 - - - - - - -
0.0888 2460 0.0223 - - - - - - -
0.0895 2480 0.0215 - - - - - - -
0.0903 2500 0.0224 0.6657 0.3728 0.7859 0.5651 0.6248 0.2813 0.5492
0.0910 2520 0.0221 - - - - - - -
0.0917 2540 0.0213 - - - - - - -
0.0924 2560 0.0226 - - - - - - -
0.0932 2580 0.022 - - - - - - -
0.0939 2600 0.0219 - - - - - - -
0.0946 2620 0.0224 - - - - - - -
0.0953 2640 0.0222 - - - - - - -
0.0960 2660 0.0211 - - - - - - -
0.0968 2680 0.0222 - - - - - - -
0.0975 2700 0.0224 - - - - - - -
0.0982 2720 0.0215 - - - - - - -
0.0989 2740 0.0214 - - - - - - -
0.0996 2760 0.0209 - - - - - - -
0.1004 2780 0.0211 - - - - - - -
0.1011 2800 0.0229 - - - - - - -
0.1018 2820 0.0214 - - - - - - -
0.1025 2840 0.0218 - - - - - - -
0.1033 2860 0.0208 - - - - - - -
0.1040 2880 0.0235 - - - - - - -
0.1047 2900 0.0228 - - - - - - -
0.1054 2920 0.021 - - - - - - -
0.1061 2940 0.0207 - - - - - - -
0.1069 2960 0.023 - - - - - - -
0.1076 2980 0.0213 - - - - - - -
0.1083 3000 0.022 0.6615 0.3599 0.7818 0.5325 0.6693 0.2927 0.5496
0.1090 3020 0.0218 - - - - - - -
0.1098 3040 0.0236 - - - - - - -
0.1105 3060 0.0211 - - - - - - -
0.1112 3080 0.0227 - - - - - - -
0.1119 3100 0.022 - - - - - - -
0.1126 3120 0.0223 - - - - - - -
0.1134 3140 0.023 - - - - - - -
0.1141 3160 0.0208 - - - - - - -
0.1148 3180 0.022 - - - - - - -
0.1155 3200 0.0226 - - - - - - -
0.1163 3220 0.0199 - - - - - - -
0.1170 3240 0.0221 - - - - - - -
0.1177 3260 0.0207 - - - - - - -
0.1184 3280 0.0202 - - - - - - -
0.1191 3300 0.0219 - - - - - - -
0.1199 3320 0.0212 - - - - - - -
0.1206 3340 0.0216 - - - - - - -
0.1213 3360 0.0215 - - - - - - -
0.1220 3380 0.0221 - - - - - - -
0.1228 3400 0.0237 - - - - - - -
0.1235 3420 0.0211 - - - - - - -
0.1242 3440 0.0217 - - - - - - -
0.1249 3460 0.0218 - - - - - - -
0.1256 3480 0.0204 - - - - - - -
0.1264 3500 0.0213 0.6531 0.3612 0.8067 0.5404 0.6415 0.2740 0.5461
0.1271 3520 0.0202 - - - - - - -
0.1278 3540 0.0209 - - - - - - -
0.1285 3560 0.022 - - - - - - -
0.1293 3580 0.021 - - - - - - -
0.1300 3600 0.0224 - - - - - - -
0.1307 3620 0.0216 - - - - - - -
0.1314 3640 0.0216 - - - - - - -
0.1321 3660 0.0224 - - - - - - -
0.1329 3680 0.0203 - - - - - - -
0.1336 3700 0.0223 - - - - - - -
0.1343 3720 0.0209 - - - - - - -
0.1350 3740 0.0221 - - - - - - -
0.1358 3760 0.0213 - - - - - - -
0.1365 3780 0.0217 - - - - - - -
0.1372 3800 0.0215 - - - - - - -
0.1379 3820 0.0227 - - - - - - -
0.1386 3840 0.0213 - - - - - - -
0.1394 3860 0.0204 - - - - - - -
0.1401 3880 0.0217 - - - - - - -
0.1408 3900 0.0216 - - - - - - -
0.1415 3920 0.0216 - - - - - - -
0.1423 3940 0.021 - - - - - - -
0.1430 3960 0.0211 - - - - - - -
0.1437 3980 0.0204 - - - - - - -
0.1444 4000 0.022 0.6493 0.3371 0.8002 0.5415 0.6542 0.2924 0.5458
0.1451 4020 0.0212 - - - - - - -
0.1459 4040 0.0201 - - - - - - -
0.1466 4060 0.0199 - - - - - - -
0.1473 4080 0.0214 - - - - - - -
0.1480 4100 0.0225 - - - - - - -
0.1488 4120 0.0214 - - - - - - -
0.1495 4140 0.0204 - - - - - - -
0.1502 4160 0.021 - - - - - - -
0.1509 4180 0.0213 - - - - - - -
0.1516 4200 0.022 - - - - - - -
0.1524 4220 0.0216 - - - - - - -
0.1531 4240 0.0216 - - - - - - -
0.1538 4260 0.0218 - - - - - - -
0.1545 4280 0.0218 - - - - - - -
0.1553 4300 0.0207 - - - - - - -
0.1560 4320 0.0218 - - - - - - -
0.1567 4340 0.0211 - - - - - - -
0.1574 4360 0.0206 - - - - - - -
0.1581 4380 0.0211 - - - - - - -
0.1589 4400 0.021 - - - - - - -
0.1596 4420 0.0218 - - - - - - -
0.1603 4440 0.021 - - - - - - -
0.1610 4460 0.0217 - - - - - - -
0.1618 4480 0.0211 - - - - - - -
0.1625 4500 0.0215 0.6572 0.3641 0.8016 0.5406 0.6554 0.2867 0.5509
0.1632 4520 0.0225 - - - - - - -
0.1639 4540 0.0196 - - - - - - -
0.1646 4560 0.0226 - - - - - - -
0.1654 4580 0.0209 - - - - - - -
0.1661 4600 0.0204 - - - - - - -
0.1668 4620 0.0214 - - - - - - -
0.1675 4640 0.0205 - - - - - - -
0.1682 4660 0.022 - - - - - - -
0.1690 4680 0.0221 - - - - - - -
0.1697 4700 0.0201 - - - - - - -
0.1704 4720 0.0205 - - - - - - -
0.1711 4740 0.0208 - - - - - - -
0.1719 4760 0.0203 - - - - - - -
0.1726 4780 0.0214 - - - - - - -
0.1733 4800 0.0211 - - - - - - -
0.1740 4820 0.0205 - - - - - - -
0.1747 4840 0.0192 - - - - - - -
0.1755 4860 0.0196 - - - - - - -
0.1762 4880 0.0212 - - - - - - -
0.1769 4900 0.0204 - - - - - - -
0.1776 4920 0.0202 - - - - - - -
0.1784 4940 0.0222 - - - - - - -
0.1791 4960 0.0213 - - - - - - -
0.1798 4980 0.0219 - - - - - - -
0.1805 5000 0.0209 0.6553 0.3534 0.8033 0.5590 0.6798 0.2934 0.5574
0.1812 5020 0.0222 - - - - - - -
0.1820 5040 0.0204 - - - - - - -
0.1827 5060 0.0209 - - - - - - -
0.1834 5080 0.0218 - - - - - - -
0.1841 5100 0.0211 - - - - - - -
0.1849 5120 0.0211 - - - - - - -
0.1856 5140 0.0205 - - - - - - -
0.1863 5160 0.0218 - - - - - - -
0.1870 5180 0.0211 - - - - - - -
0.1877 5200 0.0212 - - - - - - -
0.1885 5220 0.0199 - - - - - - -
0.1892 5240 0.0207 - - - - - - -
0.1899 5260 0.0195 - - - - - - -
0.1906 5280 0.0204 - - - - - - -
0.1914 5300 0.0212 - - - - - - -
0.1921 5320 0.0216 - - - - - - -
0.1928 5340 0.0199 - - - - - - -
0.1935 5360 0.0212 - - - - - - -
0.1942 5380 0.0198 - - - - - - -
0.1950 5400 0.0206 - - - - - - -
0.1957 5420 0.0197 - - - - - - -
0.1964 5440 0.0202 - - - - - - -
0.1971 5460 0.0205 - - - - - - -
0.1979 5480 0.0207 - - - - - - -
0.1986 5500 0.0205 0.6586 0.3714 0.7913 0.5290 0.6707 0.3050 0.5543
0.1993 5520 0.0193 - - - - - - -
0.2000 5540 0.021 - - - - - - -
0.2007 5560 0.0195 - - - - - - -
0.2015 5580 0.0215 - - - - - - -
0.2022 5600 0.021 - - - - - - -
0.2029 5620 0.0198 - - - - - - -
0.2036 5640 0.0202 - - - - - - -
0.2044 5660 0.0203 - - - - - - -
0.2051 5680 0.0211 - - - - - - -
0.2058 5700 0.0212 - - - - - - -
0.2065 5720 0.0195 - - - - - - -
0.2072 5740 0.021 - - - - - - -
0.2080 5760 0.0205 - - - - - - -
0.2087 5780 0.0198 - - - - - - -
0.2094 5800 0.0205 - - - - - - -
0.2101 5820 0.0215 - - - - - - -
0.2109 5840 0.0211 - - - - - - -
0.2116 5860 0.0198 - - - - - - -
0.2123 5880 0.02 - - - - - - -
0.2130 5900 0.0191 - - - - - - -
0.2137 5920 0.0212 - - - - - - -
0.2145 5940 0.0201 - - - - - - -
0.2152 5960 0.0206 - - - - - - -
0.2159 5980 0.0193 - - - - - - -
0.2166 6000 0.0193 0.6545 0.3756 0.7966 0.5130 0.6884 0.2871 0.5525
0.2174 6020 0.0212 - - - - - - -
0.2181 6040 0.0209 - - - - - - -
0.2188 6060 0.0195 - - - - - - -
0.2195 6080 0.02 - - - - - - -
0.2202 6100 0.0207 - - - - - - -
0.2210 6120 0.0205 - - - - - - -
0.2217 6140 0.0184 - - - - - - -
0.2224 6160 0.0188 - - - - - - -
0.2231 6180 0.0194 - - - - - - -
0.2239 6200 0.0193 - - - - - - -
0.2246 6220 0.0206 - - - - - - -
0.2253 6240 0.0208 - - - - - - -
0.2260 6260 0.0207 - - - - - - -
0.2267 6280 0.0184 - - - - - - -
0.2275 6300 0.0203 - - - - - - -
0.2282 6320 0.0212 - - - - - - -
0.2289 6340 0.0198 - - - - - - -
0.2296 6360 0.0198 - - - - - - -
0.2303 6380 0.0201 - - - - - - -
0.2311 6400 0.0213 - - - - - - -
0.2318 6420 0.0211 - - - - - - -
0.2325 6440 0.02 - - - - - - -
0.2332 6460 0.0195 - - - - - - -
0.2340 6480 0.0203 - - - - - - -
0.2347 6500 0.0189 0.6595 0.3685 0.8056 0.5097 0.7040 0.3015 0.5581
0.2354 6520 0.0189 - - - - - - -
0.2361 6540 0.0202 - - - - - - -
0.2368 6560 0.0206 - - - - - - -
0.2376 6580 0.0213 - - - - - - -
0.2383 6600 0.0207 - - - - - - -
0.2390 6620 0.0191 - - - - - - -
0.2397 6640 0.0198 - - - - - - -
0.2405 6660 0.021 - - - - - - -
0.2412 6680 0.0198 - - - - - - -
0.2419 6700 0.0218 - - - - - - -
0.2426 6720 0.0202 - - - - - - -
0.2433 6740 0.0198 - - - - - - -
0.2441 6760 0.0205 - - - - - - -
0.2448 6780 0.0196 - - - - - - -
0.2455 6800 0.0192 - - - - - - -
0.2462 6820 0.0193 - - - - - - -
0.2470 6840 0.0192 - - - - - - -
0.2477 6860 0.0209 - - - - - - -
0.2484 6880 0.0194 - - - - - - -
0.2491 6900 0.0201 - - - - - - -
0.2498 6920 0.02 - - - - - - -
0.2506 6940 0.0195 - - - - - - -
0.2513 6960 0.0204 - - - - - - -
0.2520 6980 0.0201 - - - - - - -
0.2527 7000 0.02 0.6611 0.3635 0.8035 0.5317 0.6958 0.3045 0.5600
0.2535 7020 0.0207 - - - - - - -
0.2542 7040 0.0204 - - - - - - -
0.2549 7060 0.0197 - - - - - - -
0.2556 7080 0.021 - - - - - - -
0.2563 7100 0.0207 - - - - - - -
0.2571 7120 0.0201 - - - - - - -
0.2578 7140 0.0188 - - - - - - -
0.2585 7160 0.0202 - - - - - - -
0.2592 7180 0.0197 - - - - - - -
0.2600 7200 0.0209 - - - - - - -
0.2607 7220 0.0198 - - - - - - -
0.2614 7240 0.02 - - - - - - -
0.2621 7260 0.0201 - - - - - - -
0.2628 7280 0.021 - - - - - - -
0.2636 7300 0.0199 - - - - - - -
0.2643 7320 0.0184 - - - - - - -
0.2650 7340 0.0211 - - - - - - -
0.2657 7360 0.0215 - - - - - - -
0.2665 7380 0.0204 - - - - - - -
0.2672 7400 0.0187 - - - - - - -
0.2679 7420 0.0206 - - - - - - -
0.2686 7440 0.0207 - - - - - - -
0.2693 7460 0.019 - - - - - - -
0.2701 7480 0.0195 - - - - - - -
0.2708 7500 0.0197 0.6559 0.3568 0.7916 0.5272 0.6922 0.3072 0.5551
0.2715 7520 0.0196 - - - - - - -
0.2722 7540 0.0201 - - - - - - -
0.2730 7560 0.0205 - - - - - - -
0.2737 7580 0.0202 - - - - - - -
0.2744 7600 0.0188 - - - - - - -
0.2751 7620 0.0201 - - - - - - -
0.2758 7640 0.0197 - - - - - - -
0.2766 7660 0.0207 - - - - - - -
0.2773 7680 0.0199 - - - - - - -
0.2780 7700 0.0206 - - - - - - -
0.2787 7720 0.02 - - - - - - -
0.2795 7740 0.02 - - - - - - -
0.2802 7760 0.0186 - - - - - - -
0.2809 7780 0.0193 - - - - - - -
0.2816 7800 0.0197 - - - - - - -
0.2823 7820 0.0205 - - - - - - -
0.2831 7840 0.0196 - - - - - - -
0.2838 7860 0.0202 - - - - - - -
0.2845 7880 0.0198 - - - - - - -
0.2852 7900 0.0199 - - - - - - -
0.2860 7920 0.0198 - - - - - - -
0.2867 7940 0.0192 - - - - - - -
0.2874 7960 0.0211 - - - - - - -
0.2881 7980 0.0209 - - - - - - -
0.2888 8000 0.0196 0.6504 0.3674 0.8136 0.5392 0.6900 0.3034 0.5607

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.0.2
  • PyLate: 1.2.0
  • Transformers: 4.48.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}

PyLate

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
Downloads last month
5
Safetensors
Model size
34.2M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Speedsy/turkish-multilingual-e5-small-32768-colbert-cleaned-data-8000

Finetuned
(42)
this model

Evaluation results