PyLate model based on Speedsy/turkish-multilingual-e5-small-32768

This is a PyLate model finetuned from Speedsy/turkish-multilingual-e5-small-32768 on the train dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Metrics

Py Late Information Retrieval

  • Dataset: ['NanoDBPedia', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNQ', 'NanoSCIDOCS']
  • Evaluated with pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
Metric NanoDBPedia NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNQ NanoSCIDOCS
MaxSim_accuracy@1 0.84 0.36 0.76 0.4 0.56 0.4
MaxSim_accuracy@3 0.92 0.46 0.92 0.58 0.68 0.52
MaxSim_accuracy@5 0.94 0.54 0.94 0.66 0.74 0.6
MaxSim_accuracy@10 0.96 0.62 0.98 0.72 0.78 0.74
MaxSim_precision@1 0.84 0.36 0.76 0.4 0.56 0.4
MaxSim_precision@3 0.6267 0.2 0.4933 0.1933 0.2333 0.2667
MaxSim_precision@5 0.584 0.16 0.328 0.132 0.152 0.208
MaxSim_precision@10 0.506 0.096 0.172 0.072 0.084 0.152
MaxSim_recall@1 0.1122 0.2371 0.38 0.4 0.54 0.0827
MaxSim_recall@3 0.1783 0.3065 0.74 0.58 0.65 0.1637
MaxSim_recall@5 0.2399 0.377 0.82 0.66 0.71 0.2137
MaxSim_recall@10 0.3661 0.4523 0.86 0.72 0.75 0.3107
MaxSim_ndcg@10 0.647 0.3854 0.7869 0.5577 0.655 0.3036
MaxSim_mrr@10 0.8803 0.4353 0.8472 0.5066 0.6359 0.4877
MaxSim_map@100 0.5011 0.3352 0.7203 0.516 0.626 0.2308

Pylate Custom Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with pylate_nano_beir_evaluator.PylateCustomNanoBEIREvaluator
Metric Value
MaxSim_accuracy@1 0.5533
MaxSim_accuracy@3 0.68
MaxSim_accuracy@5 0.7367
MaxSim_accuracy@10 0.8
MaxSim_precision@1 0.5533
MaxSim_precision@3 0.3356
MaxSim_precision@5 0.2607
MaxSim_precision@10 0.1803
MaxSim_recall@1 0.292
MaxSim_recall@3 0.4364
MaxSim_recall@5 0.5034
MaxSim_recall@10 0.5765
MaxSim_ndcg@10 0.5559
MaxSim_mrr@10 0.6322
MaxSim_map@100 0.4882

Training Details

Training Dataset

train

  • Dataset: train at 8f9ffcd
  • Size: 137,240 training samples
  • Columns: query_id, document_ids, and scores
  • Approximate statistics based on the first 1000 samples:
    query_id document_ids scores
    type string list list
    details
    • min: 5 tokens
    • mean: 5.82 tokens
    • max: 6 tokens
    • size: 32 elements
    • size: 32 elements
  • Samples:
    query_id document_ids scores
    237784 ['6366584', '4034101', '2325374', '6914618', '6042146', ...] [0.9999999991784339, 0.42233632827946693, 0.5956354295491569, 0.12644415907455164, 0.6636713730105909, ...]
    157602 ['5480566', '311981', '8607312', '8611391', '2717494', ...] [0.9999999992059553, 0.7295285354008706, 0.23821339931457, 0.34243176151469434, 0.42183622795288434, ...]
    730499 ['5199488', '1848985', '3570791', '6913847', '4010782', ...] [0.9999999993125671, 0.4382384529747877, 0.5134264228479131, 0.6401718577768958, 0.6584317933175119, ...]
  • Loss: pylate.losses.distillation.Distillation

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • learning_rate: 3e-05
  • num_train_epochs: 1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss NanoDBPedia_MaxSim_ndcg@10 NanoFiQA2018_MaxSim_ndcg@10 NanoHotpotQA_MaxSim_ndcg@10 NanoMSMARCO_MaxSim_ndcg@10 NanoNQ_MaxSim_ndcg@10 NanoSCIDOCS_MaxSim_ndcg@10 NanoBEIR_mean_MaxSim_ndcg@10
0.0023 20 0.0333 - - - - - - -
0.0047 40 0.0288 - - - - - - -
0.0070 60 0.0284 - - - - - - -
0.0093 80 0.0276 - - - - - - -
0.0117 100 0.0282 - - - - - - -
0.0140 120 0.0288 - - - - - - -
0.0163 140 0.0271 - - - - - - -
0.0187 160 0.0272 - - - - - - -
0.0210 180 0.0261 - - - - - - -
0.0233 200 0.0268 - - - - - - -
0.0256 220 0.0256 - - - - - - -
0.0280 240 0.0257 - - - - - - -
0.0303 260 0.0267 - - - - - - -
0.0326 280 0.0243 - - - - - - -
0.0350 300 0.0246 - - - - - - -
0.0373 320 0.0249 - - - - - - -
0.0396 340 0.0237 - - - - - - -
0.0420 360 0.0234 - - - - - - -
0.0443 380 0.0253 - - - - - - -
0.0466 400 0.0267 - - - - - - -
0.0490 420 0.0241 - - - - - - -
0.0513 440 0.025 - - - - - - -
0.0536 460 0.023 - - - - - - -
0.0560 480 0.023 - - - - - - -
0.0583 500 0.0231 0.5996 0.3001 0.7486 0.4917 0.6072 0.2797 0.5045
0.0606 520 0.0224 - - - - - - -
0.0630 540 0.0225 - - - - - - -
0.0653 560 0.0247 - - - - - - -
0.0676 580 0.0241 - - - - - - -
0.0699 600 0.0224 - - - - - - -
0.0723 620 0.0241 - - - - - - -
0.0746 640 0.0229 - - - - - - -
0.0769 660 0.0225 - - - - - - -
0.0793 680 0.0241 - - - - - - -
0.0816 700 0.0249 - - - - - - -
0.0839 720 0.0229 - - - - - - -
0.0863 740 0.0224 - - - - - - -
0.0886 760 0.0233 - - - - - - -
0.0909 780 0.0223 - - - - - - -
0.0933 800 0.0219 - - - - - - -
0.0956 820 0.0239 - - - - - - -
0.0979 840 0.0227 - - - - - - -
0.1003 860 0.0229 - - - - - - -
0.1026 880 0.023 - - - - - - -
0.1049 900 0.0231 - - - - - - -
0.1073 920 0.0223 - - - - - - -
0.1096 940 0.0227 - - - - - - -
0.1119 960 0.0221 - - - - - - -
0.1142 980 0.0214 - - - - - - -
0.1166 1000 0.0229 0.6337 0.3311 0.7761 0.5099 0.6076 0.2999 0.5264
0.1189 1020 0.0226 - - - - - - -
0.1212 1040 0.0227 - - - - - - -
0.1236 1060 0.0218 - - - - - - -
0.1259 1080 0.023 - - - - - - -
0.1282 1100 0.0231 - - - - - - -
0.1306 1120 0.0218 - - - - - - -
0.1329 1140 0.0218 - - - - - - -
0.1352 1160 0.023 - - - - - - -
0.1376 1180 0.0203 - - - - - - -
0.1399 1200 0.0229 - - - - - - -
0.1422 1220 0.0199 - - - - - - -
0.1446 1240 0.0218 - - - - - - -
0.1469 1260 0.0232 - - - - - - -
0.1492 1280 0.0217 - - - - - - -
0.1516 1300 0.0233 - - - - - - -
0.1539 1320 0.0221 - - - - - - -
0.1562 1340 0.0223 - - - - - - -
0.1585 1360 0.0217 - - - - - - -
0.1609 1380 0.0209 - - - - - - -
0.1632 1400 0.0213 - - - - - - -
0.1655 1420 0.0231 - - - - - - -
0.1679 1440 0.0209 - - - - - - -
0.1702 1460 0.0213 - - - - - - -
0.1725 1480 0.0196 - - - - - - -
0.1749 1500 0.0219 0.6441 0.3522 0.7743 0.5133 0.6216 0.2885 0.5323
0.1772 1520 0.0223 - - - - - - -
0.1795 1540 0.0224 - - - - - - -
0.1819 1560 0.0224 - - - - - - -
0.1842 1580 0.0208 - - - - - - -
0.1865 1600 0.0223 - - - - - - -
0.1889 1620 0.0218 - - - - - - -
0.1912 1640 0.0217 - - - - - - -
0.1935 1660 0.0217 - - - - - - -
0.1958 1680 0.022 - - - - - - -
0.1982 1700 0.0224 - - - - - - -
0.2005 1720 0.0216 - - - - - - -
0.2028 1740 0.0219 - - - - - - -
0.2052 1760 0.021 - - - - - - -
0.2075 1780 0.0208 - - - - - - -
0.2098 1800 0.0207 - - - - - - -
0.2122 1820 0.0204 - - - - - - -
0.2145 1840 0.0221 - - - - - - -
0.2168 1860 0.0218 - - - - - - -
0.2192 1880 0.0214 - - - - - - -
0.2215 1900 0.0205 - - - - - - -
0.2238 1920 0.0209 - - - - - - -
0.2262 1940 0.021 - - - - - - -
0.2285 1960 0.0201 - - - - - - -
0.2308 1980 0.0207 - - - - - - -
0.2332 2000 0.0199 0.6352 0.3675 0.7803 0.5339 0.6288 0.2991 0.5408
0.2355 2020 0.0214 - - - - - - -
0.2378 2040 0.0213 - - - - - - -
0.2401 2060 0.0208 - - - - - - -
0.2425 2080 0.0212 - - - - - - -
0.2448 2100 0.0211 - - - - - - -
0.2471 2120 0.0213 - - - - - - -
0.2495 2140 0.0216 - - - - - - -
0.2518 2160 0.0205 - - - - - - -
0.2541 2180 0.02 - - - - - - -
0.2565 2200 0.0208 - - - - - - -
0.2588 2220 0.0207 - - - - - - -
0.2611 2240 0.0191 - - - - - - -
0.2635 2260 0.0208 - - - - - - -
0.2658 2280 0.0207 - - - - - - -
0.2681 2300 0.0209 - - - - - - -
0.2705 2320 0.021 - - - - - - -
0.2728 2340 0.021 - - - - - - -
0.2751 2360 0.0204 - - - - - - -
0.2775 2380 0.0213 - - - - - - -
0.2798 2400 0.0214 - - - - - - -
0.2821 2420 0.0212 - - - - - - -
0.2844 2440 0.02 - - - - - - -
0.2868 2460 0.022 - - - - - - -
0.2891 2480 0.0203 - - - - - - -
0.2914 2500 0.021 0.6247 0.3624 0.7848 0.5347 0.6468 0.2907 0.5407
0.2938 2520 0.0209 - - - - - - -
0.2961 2540 0.0203 - - - - - - -
0.2984 2560 0.0194 - - - - - - -
0.3008 2580 0.021 - - - - - - -
0.3031 2600 0.0215 - - - - - - -
0.3054 2620 0.0213 - - - - - - -
0.3078 2640 0.0204 - - - - - - -
0.3101 2660 0.0202 - - - - - - -
0.3124 2680 0.0209 - - - - - - -
0.3148 2700 0.0191 - - - - - - -
0.3171 2720 0.0207 - - - - - - -
0.3194 2740 0.0207 - - - - - - -
0.3218 2760 0.0217 - - - - - - -
0.3241 2780 0.0211 - - - - - - -
0.3264 2800 0.0206 - - - - - - -
0.3287 2820 0.0202 - - - - - - -
0.3311 2840 0.0203 - - - - - - -
0.3334 2860 0.0193 - - - - - - -
0.3357 2880 0.0221 - - - - - - -
0.3381 2900 0.0205 - - - - - - -
0.3404 2920 0.0201 - - - - - - -
0.3427 2940 0.02 - - - - - - -
0.3451 2960 0.0199 - - - - - - -
0.3474 2980 0.0207 - - - - - - -
0.3497 3000 0.0195 0.6436 0.3515 0.8031 0.5500 0.6312 0.2913 0.5451
0.3521 3020 0.0195 - - - - - - -
0.3544 3040 0.0199 - - - - - - -
0.3567 3060 0.019 - - - - - - -
0.3591 3080 0.0197 - - - - - - -
0.3614 3100 0.02 - - - - - - -
0.3637 3120 0.0205 - - - - - - -
0.3661 3140 0.0197 - - - - - - -
0.3684 3160 0.0209 - - - - - - -
0.3707 3180 0.0195 - - - - - - -
0.3730 3200 0.0199 - - - - - - -
0.3754 3220 0.0221 - - - - - - -
0.3777 3240 0.0197 - - - - - - -
0.3800 3260 0.0208 - - - - - - -
0.3824 3280 0.0218 - - - - - - -
0.3847 3300 0.0218 - - - - - - -
0.3870 3320 0.0206 - - - - - - -
0.3894 3340 0.0202 - - - - - - -
0.3917 3360 0.0204 - - - - - - -
0.3940 3380 0.0197 - - - - - - -
0.3964 3400 0.0209 - - - - - - -
0.3987 3420 0.0196 - - - - - - -
0.4010 3440 0.0198 - - - - - - -
0.4034 3460 0.0205 - - - - - - -
0.4057 3480 0.0212 - - - - - - -
0.4080 3500 0.0204 0.6327 0.3466 0.7769 0.5428 0.6300 0.2975 0.5377
0.4104 3520 0.0184 - - - - - - -
0.4127 3540 0.0188 - - - - - - -
0.4150 3560 0.0198 - - - - - - -
0.4173 3580 0.0197 - - - - - - -
0.4197 3600 0.0198 - - - - - - -
0.4220 3620 0.0206 - - - - - - -
0.4243 3640 0.0185 - - - - - - -
0.4267 3660 0.0196 - - - - - - -
0.4290 3680 0.0198 - - - - - - -
0.4313 3700 0.0198 - - - - - - -
0.4337 3720 0.0207 - - - - - - -
0.4360 3740 0.019 - - - - - - -
0.4383 3760 0.0199 - - - - - - -
0.4407 3780 0.0193 - - - - - - -
0.4430 3800 0.0208 - - - - - - -
0.4453 3820 0.0202 - - - - - - -
0.4477 3840 0.0181 - - - - - - -
0.4500 3860 0.0208 - - - - - - -
0.4523 3880 0.0188 - - - - - - -
0.4547 3900 0.0193 - - - - - - -
0.4570 3920 0.0208 - - - - - - -
0.4593 3940 0.0207 - - - - - - -
0.4616 3960 0.0197 - - - - - - -
0.4640 3980 0.02 - - - - - - -
0.4663 4000 0.0205 0.6424 0.3740 0.7714 0.5338 0.6227 0.2879 0.5387
0.4686 4020 0.0197 - - - - - - -
0.4710 4040 0.0205 - - - - - - -
0.4733 4060 0.0199 - - - - - - -
0.4756 4080 0.0203 - - - - - - -
0.4780 4100 0.0211 - - - - - - -
0.4803 4120 0.0192 - - - - - - -
0.4826 4140 0.0205 - - - - - - -
0.4850 4160 0.0194 - - - - - - -
0.4873 4180 0.0203 - - - - - - -
0.4896 4200 0.0205 - - - - - - -
0.4920 4220 0.0196 - - - - - - -
0.4943 4240 0.0197 - - - - - - -
0.4966 4260 0.0189 - - - - - - -
0.4990 4280 0.0196 - - - - - - -
0.5013 4300 0.0197 - - - - - - -
0.5036 4320 0.0194 - - - - - - -
0.5059 4340 0.0192 - - - - - - -
0.5083 4360 0.0196 - - - - - - -
0.5106 4380 0.0206 - - - - - - -
0.5129 4400 0.0195 - - - - - - -
0.5153 4420 0.0196 - - - - - - -
0.5176 4440 0.0192 - - - - - - -
0.5199 4460 0.0201 - - - - - - -
0.5223 4480 0.0195 - - - - - - -
0.5246 4500 0.019 0.6309 0.3705 0.7761 0.5569 0.6237 0.3028 0.5435
0.5269 4520 0.0189 - - - - - - -
0.5293 4540 0.019 - - - - - - -
0.5316 4560 0.0201 - - - - - - -
0.5339 4580 0.0189 - - - - - - -
0.5363 4600 0.0184 - - - - - - -
0.5386 4620 0.0197 - - - - - - -
0.5409 4640 0.0193 - - - - - - -
0.5433 4660 0.0192 - - - - - - -
0.5456 4680 0.0189 - - - - - - -
0.5479 4700 0.0196 - - - - - - -
0.5502 4720 0.02 - - - - - - -
0.5526 4740 0.0196 - - - - - - -
0.5549 4760 0.0195 - - - - - - -
0.5572 4780 0.0185 - - - - - - -
0.5596 4800 0.0193 - - - - - - -
0.5619 4820 0.0193 - - - - - - -
0.5642 4840 0.0183 - - - - - - -
0.5666 4860 0.0186 - - - - - - -
0.5689 4880 0.0198 - - - - - - -
0.5712 4900 0.02 - - - - - - -
0.5736 4920 0.0196 - - - - - - -
0.5759 4940 0.0183 - - - - - - -
0.5782 4960 0.0182 - - - - - - -
0.5806 4980 0.0179 - - - - - - -
0.5829 5000 0.0191 0.6470 0.3854 0.7869 0.5577 0.6550 0.3036 0.5559

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.0.2
  • PyLate: 1.2.0
  • Transformers: 4.48.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}

PyLate

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
Downloads last month
4
Safetensors
Model size
34.2M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Speedsy/turkish-multilingual-e5-small-32768-colbert-lighton-data-5000

Finetuned
(42)
this model

Evaluation results