Dressify Outfit Recommendation Models
This repository contains the trained models for the Dressify outfit recommendation system.
Models
ResNet Item Embedder
- Architecture: ResNet50 with custom projection head
- Purpose: Generate 512-dimensional embeddings for fashion items
- Training: Triplet loss with semi-hard negative mining
- Input: Fashion item images (224x224)
- Output: L2-normalized 512D embeddings
ViT Outfit Compatibility Model
- Architecture: Vision Transformer encoder
- Purpose: Score outfit compatibility from item embeddings
- Training: Triplet loss with cosine distance
- Input: Variable-length sequence of item embeddings
- Output: Compatibility score (0-1)
Usage
from huggingface_hub import hf_hub_download
import torch
# Download models
resnet_path = hf_hub_download(repo_id="Stylique/dressify-models", filename="resnet_item_embedder_best.pth")
vit_path = hf_hub_download(repo_id="Stylique/dressify-models", filename="vit_outfit_model_best.pth")
# Load models
resnet_model = torch.load(resnet_path)
vit_model = torch.load(vit_path)
Training Details
- Dataset: Polyvore Outfits (Stylique/Polyvore)
- Loss: Triplet margin loss
- Optimizer: AdamW
- Mixed Precision: Enabled
- Hardware: NVIDIA GPU with CUDA
Performance
- ResNet: ~25M parameters, fast inference
- ViT: ~12M parameters, efficient outfit scoring
- Memory: Optimized for deployment on Hugging Face Spaces
Citation
If you use these models in your research, please cite:
@misc{dressify2024,
title={Dressify: Deep Learning for Fashion Outfit Recommendation},
author={Stylique},
year={2024},
url={https://huggingface.co/Stylique/dressify-models}
}
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support