RewardModel_RobertaBase
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1713
 - F1: 0.9670
 - Roc Auc: 0.9670
 - Accuracy: 0.9670
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 16
 - eval_batch_size: 16
 - seed: 42
 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: linear
 - num_epochs: 5
 
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | 
|---|---|---|---|---|---|---|
| No log | 1.0 | 63 | 0.1713 | 0.9670 | 0.9670 | 0.9670 | 
| 0.1703 | 2.0 | 126 | 0.1866 | 0.9670 | 0.9670 | 0.9670 | 
| 0.1703 | 3.0 | 189 | 0.1876 | 0.9670 | 0.9670 | 0.9670 | 
| 0.0284 | 4.0 | 252 | 0.1917 | 0.9670 | 0.9670 | 0.9670 | 
| 0.0283 | 5.0 | 315 | 0.1924 | 0.9670 | 0.9670 | 0.9670 | 
Framework versions
- Transformers 4.47.1
 - Pytorch 2.5.1+cu124
 - Datasets 3.2.0
 - Tokenizers 0.21.0
 
- Downloads last month
 - -
 
Model tree for SudiptoPramanik/RewardModel_RobertaBase
Base model
FacebookAI/roberta-base