RewardModel_RobertaBase

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1713
  • F1: 0.9670
  • Roc Auc: 0.9670
  • Accuracy: 0.9670

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 63 0.1713 0.9670 0.9670 0.9670
0.1703 2.0 126 0.1866 0.9670 0.9670 0.9670
0.1703 3.0 189 0.1876 0.9670 0.9670 0.9670
0.0284 4.0 252 0.1917 0.9670 0.9670 0.9670
0.0283 5.0 315 0.1924 0.9670 0.9670 0.9670

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
-
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for SudiptoPramanik/RewardModel_RobertaBase

Finetuned
(1940)
this model