|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: HuggingFaceTB/SmolVLM2-500M-Video-Instruct |
|
tags: |
|
- base_model:adapter:HuggingFaceTB/SmolVLM2-500M-Video-Instruct |
|
- lora |
|
- transformers |
|
- finance |
|
model-index: |
|
- name: Susant-Achary/SmolVLM2-500M-Video-Instruct-VQA2 |
|
results: |
|
- task: |
|
type: visual-question-answering |
|
dataset: |
|
type: jinaai/table-vqa |
|
name: jinaai/table-vqa |
|
metrics: |
|
- type: training_loss |
|
value: 0.7473664236068726 |
|
datasets: |
|
- jinaai/table-vqa |
|
language: |
|
- en |
|
pipeline_tag: visual-question-answering |
|
--- |
|
|
|
|
|
# SmolVLM2-500M-Video-Instruct-vqav2 |
|
|
|
This model is a fine-tuned version of [HuggingFaceTB/SmolVLM2-500M-Video-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct) on the [jinaai/table-vqa](https://huggingface.co/datasets/jinaai/table-vqa) dataset. |
|
|
|
## Model description |
|
|
|
This model is a SmolVLM2-500M-Video-Instruct model fine-tuned for Visual Question Answering on table images using the jinaai/table-vqa dataset. It was fine-tuned using QLoRA for efficient training on consumer GPUs. |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended for Visual Question Answering tasks specifically on images containing tables. It can be used to answer questions about the content of tables within images. |
|
|
|
Limitations: |
|
- Performance may vary on different types of images or questions outside of the table VQA domain. |
|
- The model was fine-tuned on a small subset of the dataset for demonstration purposes. |
|
- The model's performance is dependent on the quality and nature of the jinaai/table-vqa dataset. |
|
|
|
## Training and evaluation data |
|
|
|
The model was trained on a subset of the [jinaai/table-vqa](https://huggingface.co/datasets/jinaai/table-vqa) dataset. The training dataset size is 800 examples, and the test dataset size is 200 examples. |
|
|
|
## Training procedure |
|
|
|
The model was fine-tuned using the QLoRA method with the following configuration: |
|
- `r=8` |
|
- `lora_alpha=8` |
|
- `lora_dropout=0.1` |
|
- `target_modules=['down_proj','o_proj','k_proj','q_proj','gate_proj','up_proj','v_proj']` |
|
- `use_dora=False` |
|
- `init_lora_weights="gaussian"` |
|
- 4-bit quantization (`bnb_4bit_use_double_quant=True`, `bnb_4bit_quant_type="nf4"`, `bnb_4bit_compute_dtype=torch.bfloat16`) |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 1 |
|
|
|
### Direct Use |
|
```python |
|
import torch |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoProcessor, Idefics3ForConditionalGeneration, BitsAndBytesConfig |
|
from PIL import Image |
|
import requests |
|
|
|
# Define the base model and the fine-tuned adapter repository |
|
base_model_id = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct" |
|
adapter_model_id = "Susant-Achary/SmolVLM2-500M-Video-Instruct-vqav2" |
|
|
|
# Load the processor from the base model |
|
processor = AutoProcessor.from_pretrained(base_model_id) |
|
|
|
# Load the base model with quantization |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
model = Idefics3ForConditionalGeneration.from_pretrained( |
|
base_model_id, |
|
quantization_config=bnb_config, |
|
device_map="auto" |
|
) |
|
|
|
# Load the adapter and add it to the base model |
|
model = PeftModel.from_pretrained(model, adapter_model_id) |
|
|
|
# Prepare an example image and question |
|
# You can replace this with your own image and question |
|
url = "/content/VQA-20-standard-test-set-results-comparison-of-state-of-the-art-methods.png" |
|
image = Image.open(url) |
|
question = "What is in the image?" |
|
|
|
# Prepare the input for the model |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": "Answer briefly."}, |
|
{"type": "image"}, |
|
{"type": "text", "text": question} |
|
] |
|
}, |
|
{ |
|
"role": "assistant", |
|
"content": [ |
|
{"type": "text", "text": None} |
|
] |
|
} |
|
] |
|
|
|
prompt = processor.apply_chat_template(messages, add_generation_prompt=False) |
|
inputs = processor(text=[prompt], images=[image], return_tensors="pt").to(model.device) # Move inputs to model device |
|
|
|
# Generate a response |
|
generated_ids = model.generate(**inputs, max_new_tokens=100) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
# Print the generated response |
|
print(generated_text) |
|
``` |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.16.0 |
|
- Transformers 4.53.2 |
|
- Pytorch 2.7.1+cu126 |
|
- Datasets 4.0.0 |
|
- Tokenizers 0.21.2 |
|
- bitsandbytes 0.46.1 |
|
- num2words |