Q2.5-ColdBrew-R1-Indigo
Q2.5-ColdBrew-R1-Indigo is a merge of the following models using LazyMergekit:
- Theros/Qwen2.5-ColdBrew-R1
- Theros/Qwen2.5-ColdBrew-R1
- Theros/Qwen2.5-ColdBrew-R1
- Theros/Qwen2.5-ColdBrew-R1
π§© Configuration
name: Q2.5-ColdBrew-R1-Indigo
const_tag: &scale_factor 0.7071067812 # 1/sqrt(2) scaling for stability
attenuate-env: &attenuated_env
parameters:
scale:
- filter: q_proj
value: *scale_factor
- filter: k_proj
value: *scale_factor
- value: 1.0
slices:
- sources:
- model: Theros/Qwen2.5-ColdBrew-R1
layer_range: [0, 8] # Retaining foundational knowledge and language structure.
- sources:
- model: Theros/Qwen2.5-ColdBrew-R1
layer_range: [9, 19] # Full-strength duplication of mid-range reasoning layers.
- sources:
- model: Theros/Qwen2.5-ColdBrew-R1
layer_range: [10, 19] # Targeted reinforcement, slightly attenuated to avoid over-dominance.
<<: *attenuated_env
- sources:
- model: Theros/Qwen2.5-ColdBrew-R1
layer_range: [20, 28] # Keeping higher-level abstract processing untouched for stability.
merge_method: passthrough
dtype: bfloat16
normalize: true
int8_mask: true
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "SvalTek/Q2.5-ColdBrew-R1-Indigo"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 32
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for SvalTek/Q2.5-ColdBrew-R1-Indigo
Base model
Theros/Qwen2.5-ColdBrew-R1