videomae-base-finetuned-deception-dataset
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8677
- Accuracy: 0.5679
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 13
- eval_batch_size: 13
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 26
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 368
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6819 | 1.0 | 24 | 0.6935 | 0.4444 |
0.6136 | 2.0 | 48 | 0.9791 | 0.5185 |
0.3068 | 3.0 | 72 | 1.5908 | 0.5679 |
0.2164 | 4.0 | 96 | 0.9361 | 0.5926 |
0.2 | 5.0 | 120 | 1.6885 | 0.5309 |
0.3087 | 6.0 | 144 | 0.9806 | 0.7284 |
0.1689 | 7.0 | 168 | 1.3332 | 0.5556 |
0.1326 | 8.0 | 192 | 1.2937 | 0.5802 |
0.1132 | 9.0 | 216 | 1.7412 | 0.5432 |
0.0967 | 10.0 | 240 | 1.8026 | 0.5556 |
0.1155 | 11.0 | 264 | 2.0465 | 0.5556 |
0.0826 | 12.0 | 288 | 2.1887 | 0.5556 |
0.1027 | 13.0 | 312 | 2.1518 | 0.5432 |
0.0714 | 14.0 | 336 | 2.1663 | 0.5432 |
0.0654 | 15.0 | 360 | 1.8426 | 0.5679 |
0.0654 | 15.3404 | 368 | 1.8677 | 0.5679 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.1.0+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 30
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for T-5ive/videomae-base-finetuned-deception-dataset
Base model
MCG-NJU/videomae-base