videomae-base-finetuned-deception-dataset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8677
  • Accuracy: 0.5679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 13
  • eval_batch_size: 13
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 26
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 368

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6819 1.0 24 0.6935 0.4444
0.6136 2.0 48 0.9791 0.5185
0.3068 3.0 72 1.5908 0.5679
0.2164 4.0 96 0.9361 0.5926
0.2 5.0 120 1.6885 0.5309
0.3087 6.0 144 0.9806 0.7284
0.1689 7.0 168 1.3332 0.5556
0.1326 8.0 192 1.2937 0.5802
0.1132 9.0 216 1.7412 0.5432
0.0967 10.0 240 1.8026 0.5556
0.1155 11.0 264 2.0465 0.5556
0.0826 12.0 288 2.1887 0.5556
0.1027 13.0 312 2.1518 0.5432
0.0714 14.0 336 2.1663 0.5432
0.0654 15.0 360 1.8426 0.5679
0.0654 15.3404 368 1.8677 0.5679

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.1.0+cu121
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
30
Safetensors
Model size
86.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for T-5ive/videomae-base-finetuned-deception-dataset

Finetuned
(567)
this model