metadata
license: mit
language:
- zh
- en
pipeline_tag: text-generation
library_name: transformers
GLM-4-32B-0414
Introduction
Based on our latest technological advancements, we have trained a GLM-4-0414
series model. During pretraining, we incorporated more code-related and reasoning-related data. In the alignment phase, we optimized the model specifically for agent capabilities. As a result, the model's performance in agent tasks such as tool use, web search, and coding has been significantly improved.
Inference Code
Make Sure Using transforemrs>=4.51.3
.
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = "THUDM/GLM-4-32B-0414"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
message = [{"role": "user", "content": "hello!"}]
inputs = tokenizer.apply_chat_template(
message,
return_tensors="pt",
add_generation_prompt=True,
return_dict=True,
).to(model.device)
generate_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_new_tokens": 128,
"do_sample": False,
}
out = model.generate(**generate_kwargs)
print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True))