|
# SAR-DDPM
|
|
|
|
Code for the paper [SAR despeckling using a Denoising Diffusion Probabilistic Model](https://arxiv.org/pdf/2206.04514.pdf), acepted at IEEE Geoscience and Remote Sensing Letters
|
|
|
|
|
|
## To train the SAR-DDPM model:
|
|
|
|
- Download the weights 64x64 -> 256x256 upsampler from [here](https://github.com/openai/guided-diffusion).
|
|
|
|
- Create a folder ./weights and place the dowloaded weights in the folder.
|
|
|
|
- Specify the paths to your training data and validation data in ./scripts/sarddpm_train.py (line 23 and line 25)
|
|
|
|
- Use the following command to run the code (change the GPU number according to GPU availability):
|
|
|
|
```bash
|
|
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --large_size 256 --small_size 64 --learn_sigma True --noise_schedule linear --num_channels 192 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
|
|
export PYTHONPATH=$PYTHONPATH:$(pwd)
|
|
CUDA_VISIBLE_DEVICES=0 python scripts/sarddpm_train.py $MODEL_FLAGS
|
|
```
|
|
|
|
|
|
### Acknowledgement:
|
|
|
|
This code is based on DDPM implementation in [guided-diffusion](https://github.com/openai/guided-diffusion)
|
|
|
|
|
|
### Citation:
|
|
|
|
```
|
|
@ARTICLE{perera2022sar,
|
|
author={Perera, Malsha V. and Nair, Nithin Gopalakrishnan and Bandara, Wele Gedara Chaminda and Patel, Vishal M.},
|
|
journal={IEEE Geoscience and Remote Sensing Letters},
|
|
title={SAR Despeckling using a Denoising Diffusion Probabilistic Model},
|
|
year={2023}}
|
|
```
|
|
|