|
"""
|
|
Train SAR-DDPM model.
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from guided_diffusion import dist_util, logger
|
|
from guided_diffusion.image_datasets import load_data
|
|
from guided_diffusion.resample import create_named_schedule_sampler
|
|
from guided_diffusion.script_util import (
|
|
sr_model_and_diffusion_defaults,
|
|
sr_create_model_and_diffusion,
|
|
args_to_dict,
|
|
add_dict_to_argparser,
|
|
)
|
|
from guided_diffusion.train_util import TrainLoop
|
|
from torch.utils.data import DataLoader
|
|
|
|
from valdata import ValData, ValDataNew
|
|
|
|
train_dir = 'path_to_training_data/'
|
|
|
|
val_dir = 'path_to_validation_data/'
|
|
|
|
pretrained_weight_path = "./weights/64_256_upsampler.pt"
|
|
|
|
|
|
def main():
|
|
args = create_argparser().parse_args()
|
|
|
|
dist_util.setup_dist()
|
|
logger.configure()
|
|
|
|
logger.log("creating model...")
|
|
model, diffusion = sr_create_model_and_diffusion(
|
|
**args_to_dict(args, sr_model_and_diffusion_defaults().keys())
|
|
)
|
|
model.to(dist_util.dev())
|
|
schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
|
|
|
|
logger.log("creating data loader...")
|
|
|
|
|
|
|
|
val_data = DataLoader(ValDataNew(dataset_path=val_dir), batch_size=1, shuffle=False, num_workers=1)
|
|
|
|
|
|
print(args)
|
|
data = load_sar_data(
|
|
args.data_dir,
|
|
train_dir,
|
|
args.batch_size,
|
|
large_size=256,
|
|
small_size=256,
|
|
class_cond=False,
|
|
)
|
|
|
|
logger.log("training...")
|
|
TrainLoop(
|
|
model=model,
|
|
diffusion=diffusion,
|
|
data=data,
|
|
val_dat=val_data,
|
|
batch_size=args.batch_size,
|
|
microbatch=args.microbatch,
|
|
lr=args.lr,
|
|
ema_rate=args.ema_rate,
|
|
log_interval=args.log_interval,
|
|
save_interval=args.save_interval,
|
|
resume_checkpoint=args.resume_checkpoint,
|
|
args = args,
|
|
use_fp16=args.use_fp16,
|
|
fp16_scale_growth=args.fp16_scale_growth,
|
|
schedule_sampler=schedule_sampler,
|
|
weight_decay=args.weight_decay,
|
|
lr_anneal_steps=args.lr_anneal_steps,
|
|
).run_loop()
|
|
|
|
|
|
def load_sar_data(data_dir,gt_dirs, batch_size, large_size, small_size, class_cond=False):
|
|
data = load_data(
|
|
data_dir=data_dir,
|
|
gt_dir=gt_dirs,
|
|
batch_size=batch_size,
|
|
image_size=large_size,
|
|
class_cond=False,
|
|
)
|
|
for large_batch, model_kwargs in data:
|
|
yield large_batch, model_kwargs
|
|
|
|
|
|
def create_argparser():
|
|
defaults = dict(
|
|
data_dir = train_dir,
|
|
schedule_sampler="uniform",
|
|
lr=1e-4,
|
|
|
|
weight_decay=0.0,
|
|
lr_anneal_steps=0,
|
|
batch_size=2,
|
|
microbatch=1,
|
|
ema_rate="0.9999",
|
|
log_interval=1000,
|
|
save_interval=10,
|
|
resume_checkpoint=pretrained_weight_path,
|
|
use_fp16=False,
|
|
fp16_scale_growth=1e-3,
|
|
)
|
|
defaults.update(sr_model_and_diffusion_defaults())
|
|
parser = argparse.ArgumentParser()
|
|
add_dict_to_argparser(parser, defaults)
|
|
return parser
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|