YAML Metadata
Warning:
The pipeline tag "conversational" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other
Thealth-phi-2-tunned-9_medalpaca_medical_meadow
This model is a fine-tuned version of microsoft/phi-2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.6588
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Training is done one 9 medalpaca/medical_meadow datasets combined and splited to 90% train and 10% Evaluation
Dataset |
---|
medalpaca/medical_meadow_mediqa |
medalpaca/medical_meadow_mmmlu |
medalpaca/medical_meadow_medical_flashcards |
medalpaca/medical_meadow_wikidoc_patient_information |
medalpaca/medical_meadow_wikidoc |
medalpaca/medical_meadow_pubmed_causal |
medalpaca/medical_meadow_medqa |
medalpaca/medical_meadow_health_advice |
medalpaca/medical_meadow_cord19 |
Training procedure
Used different tokenizer stanford-crfm/BioMedLM
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
6.8245 | 0.0 | 500 | 6.7654 |
6.7944 | 0.0 | 1000 | 6.6588 |
Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stanford-crfm/BioMedLM", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("TachyHealthResearch/Thealth-phi-2-tunned-9_medalpaca_medical_meadow", trust_remote_code=True, torch_dtype=torch.float32)
inputs = tokenizer(
"""
question: ****** ? answer:
""",
return_tensors="pt",
return_attention_mask=False)
outputs = model.generate(**inputs, max_length=512)
text = tokenizer.batch_decode(outputs)[0]
print(text)
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for TachyHealth/Thealth-phi-2
Base model
microsoft/phi-2