ALL_RGBCROP_ori16F-8B16F-GACWDlr5e-6

This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4757
  • Accuracy: 0.8443

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 768

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6952 0.0625 48 0.7022 0.5244
0.5982 1.0625 96 0.6475 0.6463
0.4329 2.0625 144 0.5911 0.7134
0.3752 3.0625 192 0.5338 0.7378
0.2202 4.0625 240 0.5109 0.75
0.1893 5.0625 288 0.4991 0.7439
0.1454 6.0625 336 0.5313 0.7439
0.0931 7.0625 384 0.5668 0.7439
0.0657 8.0625 432 0.6028 0.7622
0.0704 9.0625 480 0.6340 0.7744
0.0298 10.0625 528 0.6770 0.7683
0.031 11.0625 576 0.7089 0.7805
0.0265 12.0625 624 0.7415 0.7683
0.0238 13.0625 672 0.7703 0.7744
0.0143 14.0625 720 0.7857 0.7744
0.0082 15.0625 768 0.7922 0.7683

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
21
Safetensors
Model size
86.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for TanAlexanderlz/ALL_RGBCROP_ori16F-8B16F-GACWDlr5e-6

Finetuned
(219)
this model