TanAlexanderlz's picture
Update README.md
cdea17e verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-kinetics
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: ALL_RGBCROP_ori16F-8B16F-GWlr-cosine
    results: []

ALL_RGBCROP_ori16F-8B16F-GWlr-cosine

This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3658
  • Accuracy: 0.8623

Best Checkpoint : 240

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1152

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6775 0.0417 48 0.7147 0.4695
0.5877 1.0417 96 0.6383 0.6220
0.3375 2.0417 144 0.5176 0.7317
0.219 3.0417 192 0.4915 0.7805
0.0698 4.0417 240 0.5611 0.8110
0.0587 5.0417 288 0.6506 0.7927
0.0194 6.0417 336 0.7638 0.7988
0.0029 7.0417 384 0.9139 0.7805
0.0023 8.0417 432 0.9306 0.7988
0.0033 9.0417 480 0.9203 0.7988

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1