RALL_RGBCROP_Aug16F-cosine
This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7115
- Accuracy: 0.8112
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3462
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4882 | 0.0835 | 289 | 0.5762 | 0.6830 |
0.2286 | 1.0835 | 578 | 0.5037 | 0.7873 |
0.0741 | 2.0835 | 867 | 0.7741 | 0.7751 |
0.0217 | 3.0835 | 1156 | 0.9661 | 0.7832 |
0.0053 | 4.0835 | 1445 | 1.0540 | 0.7975 |
0.0034 | 5.0835 | 1734 | 1.1605 | 0.7894 |
0.0004 | 6.0835 | 2023 | 1.2104 | 0.7812 |
0.0003 | 7.0835 | 2312 | 1.2483 | 0.7832 |
0.0002 | 8.0835 | 2601 | 1.2790 | 0.7812 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 48
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for TanAlexanderlz/RALL_RGBCROP_Aug16F-cosine
Base model
MCG-NJU/videomae-base-finetuned-kinetics