her-eyes / README.md
Tech-Meld's picture
Upload folder using huggingface_hub
ba39e6e verified
metadata
license: other
license_name: bespoke-lora-trained-license
license_link: >-
  https://multimodal.art/civitai-licenses?allowNoCredit=False&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=False
tags:
  - text-to-image
  - stable-diffusion
  - lora
  - diffusers
  - template:sd-lora
  - migrated
  - photorealistic
  - realism
  - base model
  - eyes
  - woman
  - girls
  - realistic
  - pretty
  - eye
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: null
widget:
  - text: ' '
    output:
      url: 24333209.jpeg
  - text: ' '
    output:
      url: 24333146.jpeg
  - text: ' '
    output:
      url: 24271280.jpeg
  - text: ' '
    output:
      url: 24272502.jpeg
  - text: ' '
    output:
      url: 24272914.jpeg
  - text: ' '
    output:
      url: 24281303.jpeg
  - text: ' '
    output:
      url: 24415396.jpeg
  - text: ' '
    output:
      url: 24417334.jpeg
  - text: ' '
    output:
      url: 24627863.jpeg
  - text: ' '
    output:
      url: 24627775.jpeg

Her Eyes

Prompt
Prompt
Prompt
Prompt
Prompt
Prompt
Prompt
Prompt
Prompt
Prompt

Model description

This is a test version of "Her Eyes" LoRA, if you get unexpectedly bad results or images please share them with me "The creator" directly to improve this LoRA on an upcoming update.

Your support drives our ability to create better, more enjoyable and controllable diffusion models and adapter that fit all your AI image generation needs.

Download model

Weights for this model are available in Safetensors format.

Download them in the Files & versions tab.

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Tech-Meld/her-eyes', weight_name='Her_Eyes.safetensors')
image = pipeline('Your custom prompt').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers