--- language: - en library_name: transformers pipeline_tag: text-generation license: apache-2.0 base_model: - Qwen/Qwen3-4B-Instruct-2507 tags: - web-generation - html - css - tailwind-css - ui-generation - web-design - small-model - qwen3 - transformers ---
Tesslate • Research Preview

WEBGEN-4B-Preview

A 4B web-only generator that turns one prompt into clean, responsive HTML/CSS/Tailwind. Small enough for laptops; opinionated for consistent, modern layouts.

TRY IT HERE! Get on Designer Open weights Web-only bias Mobile-first output No external JS by default
Model card Tesslate Demos Discord
Hero sample Pricing sample Features sample Hero sample Pricing sample Features sample

What it is

WEBGEN-4B-Preview focuses solely on generating production-lean websites. It prefers semantic HTML, sane spacing, and modern component blocks (hero, grids, pricing, FAQ).

Why 4B

Small enough for local runs and fast iteration, while retaining strong structure/consistency for HTML/CSS/Tailwind output.


## Quickstart ### Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_id = "Tesslate/WEBGEN-4B-Preview"
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

prompt = """Make a single-file landing page for 'LatticeDB'.
Style: modern, generous whitespace, Tailwind, rounded-xl, soft gradients.
Sections: navbar, hero (headline + 2 CTAs), features grid, pricing (3 tiers),
FAQ accordion, footer. Constraints: semantic HTML, no external JS."""

inputs = tok(prompt, return_tensors="pt").to(model.device)
out = model.generate(**inputs, max_new_tokens=2000, temperature=0.7, top_p=0.9)
print(tok.decode(out[0], skip_special_tokens=True))
### vLLM
vllm serve Tesslate/WEBGEN-4B-Preview \
  --host 0.0.0.0 --port 8000 \
  --max-model-len 65536 \
  --gpu-memory-utilization 0.92
### sglang
python -m sglang.launch_server \
  --model-path Tesslate/WEBGEN-4B-Preview \
  --host 0.0.0.0 --port 5000 \
  --mem-fraction-static 0.94 \
  --attention-backend flashinfer \
  --served-model-name webgen-4b
> **Tip:** Lower temperature (e.g., `0.4–0.6`) yields stricter, cleaner markup. Raise it for more visual variety.
## Inference Settings (suggested)
ParamValueNotes
temperature0.6Balance creativity & consistency (lower if quantized)
top_p0.9Nucleus sampling
top_k40Optional vocab restriction
max_new_tokens1200–2500Single-file sites often fit < 1500
repetition_penalty1.1Reduces repetitive classes/markup

## Prompts that work well

Starter

Make a single-file landing page for "RasterFlow" (GPU video pipeline).
Style: modern tech, muted palette, Tailwind, rounded-xl, subtle gradients.
Sections: navbar, hero (big headline + 2 CTAs), logos row, features (3x cards),
code block (copyable), pricing (3 tiers), FAQ accordion, footer.
Constraints: semantic HTML, no external JS. Return ONLY the HTML code.

Design-strict

Use an 8pt spacing system. Palette: slate with indigo accents.
Typography scale: 14/16/18/24/36/56. Max width: 1200px.
Avoid shadows > md; prefer borders/dividers.

## Quantization & VRAM (example)
FormatFootprintNotes
BF168.05 GBFastest, best fidelity
GGUF Q5_K_M2.89 GBGreat quality/size trade-off
GGUF Q4_K_M2.5 GBSmallest comfortable for laptops

## Intended Use & Scope - **Primary:** Generate complete, single-file websites (landing pages, marketing pages, simple docs) with **semantic HTML** and **Tailwind** classes. - **Secondary:** Component blocks (hero, pricing, FAQ) for manual composition.
Limitations
Ethical Considerations

## Training Summary (research preview) - **Base:** Qwen/Qwen3-4B-Instruct - **Objective:** Tight web-only bias; reward semantic structure, spacing rhythm, and responsiveness. - **Data:** Mixture of curated HTML/CSS/Tailwind snippets, component libraries, and synthetic page specs. - **Recipe:** SFT with format constraints → instruction tuning → style/rhythm preference optimization. - **Context:** effective ~64k; trained to keep default outputs within practical page length.
## Example Outputs ## Community - **Examples:** uigenoutput.tesslate.com - **Discord:** discord.gg/EcCpcTv93U - **Website:** tesslate.com
“Why are good design models so expensive” — Tesslate Team

## Citation ``` @misc{tesslate_webgen_4b_preview_2025, title = {WEBGEN-4B-Preview: Design-first web generation with a 4B model}, author = {Tesslate Team}, year = {2025}, url = {https://huggingface.co/Tesslate/WEBGEN-4B-Preview} } ```