--- language: - en library_name: transformers pipeline_tag: text-generation license: apache-2.0 base_model: - Qwen/Qwen3-4B-Instruct-2507 tags: - web-generation - html - css - tailwind-css - ui-generation - web-design - small-model - qwen3 - transformers ---
A 4B web-only generator that turns one prompt into clean, responsive HTML/CSS/Tailwind. Small enough for laptops; opinionated for consistent, modern layouts.
WEBGEN-4B-Preview focuses solely on generating production-lean websites. It prefers semantic HTML, sane spacing, and modern component blocks (hero, grids, pricing, FAQ).
Small enough for local runs and fast iteration, while retaining strong structure/consistency for HTML/CSS/Tailwind output.
from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "Tesslate/WEBGEN-4B-Preview" tok = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto" ) prompt = """Make a single-file landing page for 'LatticeDB'. Style: modern, generous whitespace, Tailwind, rounded-xl, soft gradients. Sections: navbar, hero (headline + 2 CTAs), features grid, pricing (3 tiers), FAQ accordion, footer. Constraints: semantic HTML, no external JS.""" inputs = tok(prompt, return_tensors="pt").to(model.device) out = model.generate(**inputs, max_new_tokens=2000, temperature=0.7, top_p=0.9) print(tok.decode(out[0], skip_special_tokens=True))
vllm serve Tesslate/WEBGEN-4B-Preview \ --host 0.0.0.0 --port 8000 \ --max-model-len 65536 \ --gpu-memory-utilization 0.92
python -m sglang.launch_server \ --model-path Tesslate/WEBGEN-4B-Preview \ --host 0.0.0.0 --port 5000 \ --mem-fraction-static 0.94 \ --attention-backend flashinfer \ --served-model-name webgen-4b
Param | Value | Notes |
---|---|---|
temperature | 0.6 | Balance creativity & consistency (lower if quantized) |
top_p | 0.9 | Nucleus sampling |
top_k | 40 | Optional vocab restriction |
max_new_tokens | 1200–2500 | Single-file sites often fit < 1500 |
repetition_penalty | 1.1 | Reduces repetitive classes/markup |
Make a single-file landing page for "RasterFlow" (GPU video pipeline). Style: modern tech, muted palette, Tailwind, rounded-xl, subtle gradients. Sections: navbar, hero (big headline + 2 CTAs), logos row, features (3x cards), code block (copyable), pricing (3 tiers), FAQ accordion, footer. Constraints: semantic HTML, no external JS. Return ONLY the HTML code.
Use an 8pt spacing system. Palette: slate with indigo accents. Typography scale: 14/16/18/24/36/56. Max width: 1200px. Avoid shadows > md; prefer borders/dividers.
Format | Footprint | Notes |
---|---|---|
BF16 | 8.05 GB | Fastest, best fidelity |
GGUF Q5_K_M | 2.89 GB | Great quality/size trade-off |
GGUF Q4_K_M | 2.5 GB | Smallest comfortable for laptops |
Qwen/Qwen3-4B-Instruct
- **Objective:** Tight web-only bias; reward semantic structure, spacing rhythm, and responsiveness.
- **Data:** Mixture of curated HTML/CSS/Tailwind snippets, component libraries, and synthetic page specs.
- **Recipe:** SFT with format constraints → instruction tuning → style/rhythm preference optimization.
- **Context:** effective ~64k; trained to keep default outputs within practical page length.
“Why are good design models so expensive” — Tesslate Team