snappfood_review_classifier

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on PNLPhub/snappfood-sentiment-analysis dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4795
  • Accuracy: 0.8576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 30
  • eval_batch_size: 30
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2301 0.2879 500 0.4019 0.8598
0.213 0.5757 1000 0.3862 0.8607
0.2391 0.8636 1500 0.3630 0.8472
0.1895 1.1514 2000 0.3852 0.8577
0.2177 1.4393 2500 0.3732 0.8557
0.1784 1.7271 3000 0.4143 0.8581
0.1546 2.0150 3500 0.4195 0.8627
0.1377 2.3028 4000 0.4511 0.8581
0.1213 2.5907 4500 0.4887 0.8546
0.1463 2.8785 5000 0.4795 0.8576

Framework versions

  • Transformers 4.53.0
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
75
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for TheMehrad/snappfood_review_classifier

Finetuned
(783)
this model