rtdetr-v2-r50-cppe5-finetune-2
This model is a fine-tuned version of PekingU/rtdetr_v2_r50vd on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 10.6611
- Map: 0.4652
- Map 50: 0.7392
- Map 75: 0.4913
- Map Small: 0.4144
- Map Medium: 0.408
- Map Large: 0.6877
- Mar 1: 0.3462
- Mar 10: 0.5905
- Mar 100: 0.6213
- Mar Small: 0.5031
- Mar Medium: 0.5941
- Mar Large: 0.797
- Map Coverall: 0.5169
- Mar 100 Coverall: 0.7308
- Map Face Shield: 0.6256
- Mar 100 Face Shield: 0.7647
- Map Gloves: 0.3657
- Mar 100 Gloves: 0.4695
- Map Goggles: 0.3236
- Mar 100 Goggles: 0.569
- Map Mask: 0.4943
- Mar 100 Mask: 0.5725
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 107 | 30.1839 | 0.016 | 0.0345 | 0.0134 | 0.0007 | 0.0053 | 0.0226 | 0.0455 | 0.1408 | 0.211 | 0.0084 | 0.1212 | 0.4057 | 0.0711 | 0.5662 | 0.0016 | 0.1152 | 0.0014 | 0.0906 | 0.0008 | 0.1738 | 0.005 | 0.1093 |
No log | 2.0 | 214 | 16.7728 | 0.1009 | 0.1942 | 0.0938 | 0.0547 | 0.0805 | 0.1953 | 0.1867 | 0.3758 | 0.4332 | 0.1908 | 0.3709 | 0.6932 | 0.1882 | 0.677 | 0.032 | 0.3532 | 0.0513 | 0.3313 | 0.0052 | 0.3646 | 0.228 | 0.44 |
No log | 3.0 | 321 | 12.7316 | 0.1804 | 0.3533 | 0.1597 | 0.0691 | 0.1641 | 0.3172 | 0.231 | 0.4267 | 0.4555 | 0.1823 | 0.4147 | 0.6742 | 0.3724 | 0.7005 | 0.0404 | 0.357 | 0.1209 | 0.3795 | 0.044 | 0.3615 | 0.3242 | 0.4791 |
No log | 4.0 | 428 | 12.1055 | 0.2658 | 0.501 | 0.2489 | 0.1121 | 0.2263 | 0.4968 | 0.2788 | 0.4595 | 0.5005 | 0.2786 | 0.4725 | 0.6846 | 0.4333 | 0.6626 | 0.1537 | 0.5139 | 0.2083 | 0.3862 | 0.1806 | 0.4508 | 0.353 | 0.4889 |
42.0484 | 5.0 | 535 | 11.3959 | 0.2867 | 0.5474 | 0.2422 | 0.147 | 0.2355 | 0.4664 | 0.2805 | 0.4701 | 0.5143 | 0.3533 | 0.454 | 0.6959 | 0.4869 | 0.6775 | 0.1774 | 0.4975 | 0.2341 | 0.4397 | 0.1732 | 0.4554 | 0.3616 | 0.5013 |
42.0484 | 6.0 | 642 | 11.4755 | 0.2882 | 0.5541 | 0.2562 | 0.154 | 0.2311 | 0.475 | 0.2813 | 0.4717 | 0.5049 | 0.3248 | 0.4711 | 0.636 | 0.54 | 0.6905 | 0.1699 | 0.4975 | 0.2088 | 0.4107 | 0.1819 | 0.4431 | 0.3401 | 0.4827 |
42.0484 | 7.0 | 749 | 11.7154 | 0.2828 | 0.5508 | 0.2406 | 0.127 | 0.2091 | 0.4946 | 0.2694 | 0.4424 | 0.4697 | 0.2653 | 0.419 | 0.6831 | 0.5516 | 0.6874 | 0.2275 | 0.4304 | 0.1822 | 0.3938 | 0.1334 | 0.3862 | 0.3193 | 0.4507 |
42.0484 | 8.0 | 856 | 11.4855 | 0.3113 | 0.5832 | 0.2919 | 0.158 | 0.2411 | 0.5272 | 0.2789 | 0.4588 | 0.4855 | 0.2879 | 0.4188 | 0.6826 | 0.5473 | 0.6622 | 0.246 | 0.4772 | 0.2594 | 0.4076 | 0.1626 | 0.4138 | 0.3412 | 0.4667 |
42.0484 | 9.0 | 963 | 11.3829 | 0.3098 | 0.5677 | 0.2939 | 0.1821 | 0.2679 | 0.4987 | 0.2822 | 0.4751 | 0.5089 | 0.3598 | 0.4528 | 0.6827 | 0.5522 | 0.6842 | 0.2402 | 0.4722 | 0.2474 | 0.4214 | 0.1614 | 0.4877 | 0.3477 | 0.4791 |
14.9538 | 10.0 | 1070 | 11.8261 | 0.2954 | 0.556 | 0.2816 | 0.1369 | 0.2564 | 0.5044 | 0.2734 | 0.4488 | 0.4751 | 0.2991 | 0.4187 | 0.6705 | 0.5175 | 0.6631 | 0.2191 | 0.4418 | 0.2339 | 0.408 | 0.1751 | 0.4185 | 0.3314 | 0.444 |
14.9538 | 11.0 | 1177 | 11.9160 | 0.3104 | 0.5849 | 0.2901 | 0.1087 | 0.257 | 0.546 | 0.2978 | 0.4631 | 0.4914 | 0.2853 | 0.443 | 0.6932 | 0.532 | 0.6874 | 0.2522 | 0.4646 | 0.208 | 0.3862 | 0.2249 | 0.4569 | 0.335 | 0.4618 |
14.9538 | 12.0 | 1284 | 11.8827 | 0.2944 | 0.548 | 0.273 | 0.1352 | 0.2355 | 0.5081 | 0.2679 | 0.4445 | 0.4792 | 0.3048 | 0.4302 | 0.6445 | 0.5355 | 0.6779 | 0.2265 | 0.4241 | 0.215 | 0.417 | 0.1727 | 0.42 | 0.3221 | 0.4569 |
14.9538 | 13.0 | 1391 | 12.0347 | 0.2731 | 0.5145 | 0.2554 | 0.1074 | 0.2208 | 0.4958 | 0.2606 | 0.4344 | 0.4794 | 0.2714 | 0.4362 | 0.6668 | 0.4701 | 0.6676 | 0.2072 | 0.4405 | 0.2062 | 0.4103 | 0.1806 | 0.4308 | 0.3016 | 0.448 |
14.9538 | 14.0 | 1498 | 12.5216 | 0.2705 | 0.5218 | 0.2486 | 0.1253 | 0.2179 | 0.4779 | 0.2567 | 0.4199 | 0.4534 | 0.2618 | 0.4116 | 0.6342 | 0.4892 | 0.6545 | 0.1799 | 0.3848 | 0.1921 | 0.3795 | 0.1646 | 0.3938 | 0.3265 | 0.4542 |
13.1755 | 15.0 | 1605 | 12.3301 | 0.2762 | 0.5159 | 0.2589 | 0.0995 | 0.218 | 0.4821 | 0.2613 | 0.4207 | 0.4526 | 0.2929 | 0.401 | 0.6153 | 0.5048 | 0.664 | 0.1867 | 0.3709 | 0.1733 | 0.3795 | 0.1903 | 0.4092 | 0.3257 | 0.4396 |
13.1755 | 16.0 | 1712 | 12.6809 | 0.2743 | 0.5232 | 0.2615 | 0.1284 | 0.2239 | 0.4824 | 0.2645 | 0.4343 | 0.4755 | 0.2878 | 0.4315 | 0.653 | 0.4422 | 0.6351 | 0.2324 | 0.4443 | 0.1814 | 0.3688 | 0.2005 | 0.4723 | 0.3153 | 0.4569 |
13.1755 | 17.0 | 1819 | 12.4264 | 0.2731 | 0.5247 | 0.2445 | 0.1043 | 0.2211 | 0.4829 | 0.2642 | 0.4265 | 0.4571 | 0.2817 | 0.4008 | 0.6422 | 0.4872 | 0.6568 | 0.2021 | 0.4076 | 0.1636 | 0.3536 | 0.2064 | 0.4385 | 0.3063 | 0.4293 |
13.1755 | 18.0 | 1926 | 12.1690 | 0.295 | 0.5675 | 0.272 | 0.1195 | 0.2455 | 0.5172 | 0.2824 | 0.4366 | 0.4683 | 0.2559 | 0.4254 | 0.6484 | 0.5016 | 0.6595 | 0.2956 | 0.4443 | 0.1619 | 0.3603 | 0.1906 | 0.4185 | 0.3252 | 0.4591 |
12.1885 | 19.0 | 2033 | 12.2757 | 0.2889 | 0.5508 | 0.2619 | 0.1145 | 0.2375 | 0.5014 | 0.269 | 0.433 | 0.4638 | 0.2492 | 0.4169 | 0.6589 | 0.4878 | 0.6595 | 0.2877 | 0.4494 | 0.1704 | 0.3549 | 0.1983 | 0.4262 | 0.3002 | 0.4289 |
12.1885 | 20.0 | 2140 | 12.2426 | 0.3032 | 0.572 | 0.2731 | 0.103 | 0.243 | 0.5477 | 0.2773 | 0.445 | 0.4857 | 0.2911 | 0.4432 | 0.6613 | 0.5195 | 0.6581 | 0.3066 | 0.4405 | 0.1925 | 0.4134 | 0.1803 | 0.4462 | 0.3171 | 0.4702 |
12.1885 | 21.0 | 2247 | 12.3989 | 0.2916 | 0.5502 | 0.272 | 0.1122 | 0.2386 | 0.511 | 0.2747 | 0.4453 | 0.4804 | 0.2866 | 0.4475 | 0.641 | 0.5384 | 0.6739 | 0.2633 | 0.4481 | 0.1679 | 0.3933 | 0.1698 | 0.4169 | 0.3187 | 0.4698 |
12.1885 | 22.0 | 2354 | 12.0240 | 0.3148 | 0.5911 | 0.2942 | 0.1464 | 0.2741 | 0.5199 | 0.2898 | 0.4491 | 0.4895 | 0.2978 | 0.4471 | 0.6738 | 0.5314 | 0.6757 | 0.3199 | 0.4519 | 0.1978 | 0.4174 | 0.1916 | 0.4354 | 0.3335 | 0.4671 |
12.1885 | 23.0 | 2461 | 12.3447 | 0.3001 | 0.5627 | 0.2693 | 0.0889 | 0.2524 | 0.5265 | 0.2751 | 0.4439 | 0.4783 | 0.2785 | 0.428 | 0.655 | 0.5289 | 0.673 | 0.2589 | 0.4354 | 0.1884 | 0.3763 | 0.2093 | 0.4415 | 0.315 | 0.4653 |
11.4223 | 24.0 | 2568 | 12.2785 | 0.2949 | 0.5492 | 0.2699 | 0.1189 | 0.2449 | 0.5269 | 0.2723 | 0.4411 | 0.4714 | 0.2738 | 0.4217 | 0.6581 | 0.5369 | 0.6833 | 0.2443 | 0.419 | 0.1813 | 0.3741 | 0.2034 | 0.4385 | 0.3083 | 0.4422 |
11.4223 | 25.0 | 2675 | 12.6573 | 0.2723 | 0.5239 | 0.2439 | 0.0732 | 0.2321 | 0.4827 | 0.2624 | 0.4233 | 0.4575 | 0.2445 | 0.4103 | 0.641 | 0.4973 | 0.6541 | 0.2145 | 0.4278 | 0.1901 | 0.3661 | 0.1814 | 0.4046 | 0.2783 | 0.4351 |
11.4223 | 26.0 | 2782 | 12.6655 | 0.2847 | 0.5322 | 0.2672 | 0.1111 | 0.2407 | 0.5069 | 0.2691 | 0.426 | 0.4592 | 0.2404 | 0.413 | 0.6528 | 0.5108 | 0.6626 | 0.2417 | 0.4139 | 0.1877 | 0.3652 | 0.1853 | 0.4138 | 0.2979 | 0.4404 |
11.4223 | 27.0 | 2889 | 12.5127 | 0.2952 | 0.547 | 0.2728 | 0.1306 | 0.2385 | 0.5071 | 0.2706 | 0.4342 | 0.4672 | 0.2397 | 0.4179 | 0.6469 | 0.5328 | 0.6721 | 0.2528 | 0.4215 | 0.2026 | 0.3879 | 0.1899 | 0.4031 | 0.2981 | 0.4516 |
11.4223 | 28.0 | 2996 | 12.7679 | 0.271 | 0.512 | 0.2567 | 0.0931 | 0.2248 | 0.4729 | 0.2537 | 0.4154 | 0.4493 | 0.2626 | 0.3981 | 0.6353 | 0.5163 | 0.6586 | 0.2136 | 0.4089 | 0.1561 | 0.3496 | 0.1939 | 0.4123 | 0.2751 | 0.4173 |
10.803 | 29.0 | 3103 | 12.8845 | 0.2699 | 0.5064 | 0.2455 | 0.0718 | 0.2298 | 0.4619 | 0.2551 | 0.4191 | 0.4536 | 0.2406 | 0.4114 | 0.6345 | 0.5199 | 0.6649 | 0.2169 | 0.4316 | 0.1408 | 0.3473 | 0.1905 | 0.4031 | 0.2813 | 0.4209 |
10.803 | 30.0 | 3210 | 12.6244 | 0.2858 | 0.5387 | 0.2646 | 0.1235 | 0.2382 | 0.4958 | 0.2665 | 0.4265 | 0.4599 | 0.2799 | 0.3994 | 0.6424 | 0.5172 | 0.6671 | 0.2742 | 0.4114 | 0.1548 | 0.3594 | 0.1984 | 0.4385 | 0.2842 | 0.4231 |
10.803 | 31.0 | 3317 | 12.8007 | 0.2737 | 0.5037 | 0.2615 | 0.0809 | 0.2272 | 0.5058 | 0.2534 | 0.4145 | 0.4564 | 0.2525 | 0.4004 | 0.6573 | 0.5116 | 0.6676 | 0.2147 | 0.3924 | 0.1694 | 0.3589 | 0.1913 | 0.4338 | 0.2813 | 0.4293 |
10.803 | 32.0 | 3424 | 12.4891 | 0.292 | 0.5425 | 0.2747 | 0.1244 | 0.2507 | 0.5151 | 0.2728 | 0.4326 | 0.4635 | 0.2858 | 0.417 | 0.6562 | 0.519 | 0.6703 | 0.2243 | 0.3886 | 0.194 | 0.3786 | 0.2176 | 0.4446 | 0.3053 | 0.4356 |
10.2825 | 33.0 | 3531 | 12.5182 | 0.301 | 0.5548 | 0.2809 | 0.0843 | 0.2558 | 0.5149 | 0.2766 | 0.4427 | 0.4699 | 0.2576 | 0.425 | 0.6483 | 0.5355 | 0.6775 | 0.2817 | 0.4392 | 0.1732 | 0.3571 | 0.202 | 0.4308 | 0.3126 | 0.4449 |
10.2825 | 34.0 | 3638 | 12.5050 | 0.2903 | 0.5353 | 0.2866 | 0.0792 | 0.2516 | 0.4996 | 0.2687 | 0.4363 | 0.4663 | 0.2601 | 0.4267 | 0.6397 | 0.5312 | 0.6721 | 0.2486 | 0.4342 | 0.1757 | 0.358 | 0.2044 | 0.4385 | 0.2914 | 0.4289 |
10.2825 | 35.0 | 3745 | 12.7033 | 0.2744 | 0.5173 | 0.2569 | 0.0852 | 0.2345 | 0.4946 | 0.2661 | 0.4231 | 0.4634 | 0.2465 | 0.4147 | 0.6623 | 0.4855 | 0.6599 | 0.2283 | 0.4203 | 0.1814 | 0.367 | 0.1796 | 0.4354 | 0.2974 | 0.4347 |
10.2825 | 36.0 | 3852 | 12.6134 | 0.2838 | 0.5419 | 0.2591 | 0.0896 | 0.243 | 0.5131 | 0.2687 | 0.4303 | 0.4567 | 0.2489 | 0.4076 | 0.666 | 0.5217 | 0.6649 | 0.2063 | 0.3899 | 0.1811 | 0.3562 | 0.2107 | 0.4492 | 0.2992 | 0.4231 |
10.2825 | 37.0 | 3959 | 12.5976 | 0.2887 | 0.5406 | 0.2785 | 0.089 | 0.2484 | 0.5045 | 0.2749 | 0.4308 | 0.463 | 0.2536 | 0.4189 | 0.6548 | 0.516 | 0.6653 | 0.2379 | 0.4038 | 0.1944 | 0.367 | 0.1887 | 0.4385 | 0.3066 | 0.4404 |
9.7729 | 38.0 | 4066 | 12.6047 | 0.2885 | 0.5353 | 0.2776 | 0.0763 | 0.2494 | 0.5142 | 0.2698 | 0.4287 | 0.4623 | 0.2433 | 0.4153 | 0.6744 | 0.5271 | 0.6703 | 0.2344 | 0.3962 | 0.1851 | 0.3554 | 0.1887 | 0.4477 | 0.3074 | 0.4418 |
9.7729 | 39.0 | 4173 | 12.6272 | 0.2882 | 0.5323 | 0.2759 | 0.0807 | 0.2524 | 0.5078 | 0.272 | 0.4284 | 0.461 | 0.2471 | 0.4135 | 0.6656 | 0.5106 | 0.6631 | 0.2459 | 0.4025 | 0.1879 | 0.3612 | 0.1931 | 0.4431 | 0.3037 | 0.4351 |
9.7729 | 40.0 | 4280 | 12.5834 | 0.2938 | 0.5445 | 0.2786 | 0.0904 | 0.2572 | 0.5134 | 0.2707 | 0.4314 | 0.4641 | 0.2515 | 0.4156 | 0.6709 | 0.5142 | 0.6685 | 0.2442 | 0.4025 | 0.1994 | 0.3598 | 0.2002 | 0.4431 | 0.311 | 0.4467 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 82
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for TheRomanFour/rtdetr-v2-r50-cppe5-finetune-2
Base model
PekingU/rtdetr_v2_r50vd