route_background_semantic

This model is a fine-tuned version of nvidia/segformer-b3-finetuned-cityscapes-1024-1024 on the Logiroad/route_background_semantic dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2360
  • Mean Iou: 0.1916
  • Mean Accuracy: 0.2447
  • Overall Accuracy: 0.2962
  • Accuracy Unlabeled: nan
  • Accuracy Découpe: 0.2865
  • Accuracy Reflet météo: 0.0
  • Accuracy Autre réparation: 0.3437
  • Accuracy Glaçage ou ressuage: 0.0386
  • Accuracy Emergence: 0.5549
  • Iou Unlabeled: 0.0
  • Iou Découpe: 0.2515
  • Iou Reflet météo: 0.0
  • Iou Autre réparation: 0.3230
  • Iou Glaçage ou ressuage: 0.0369
  • Iou Emergence: 0.5379

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 1337
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: polynomial
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Découpe Accuracy Reflet météo Accuracy Autre réparation Accuracy Glaçage ou ressuage Accuracy Emergence Iou Unlabeled Iou Découpe Iou Reflet météo Iou Autre réparation Iou Glaçage ou ressuage Iou Emergence
0.2715 1.0 2427 0.2682 0.0521 0.0669 0.1828 nan 0.0813 0.0 0.2533 0.0 0.0 0.0 0.0766 0.0 0.2362 0.0 0.0
0.2815 2.0 4854 0.2682 0.1165 0.1436 0.1593 nan 0.1108 0.0 0.1982 0.0 0.4090 0.0 0.1014 0.0 0.1916 0.0 0.4057
0.2638 3.0 7281 0.2420 0.1664 0.2100 0.2564 nan 0.2346 0.0 0.3039 0.0030 0.5085 0.0 0.2128 0.0 0.2854 0.0030 0.4973
0.2703 4.0 9708 0.2333 0.1941 0.2475 0.3074 nan 0.2843 0.0 0.3612 0.0446 0.5473 0.0 0.2512 0.0 0.3383 0.0429 0.5320
0.2197 4.1203 10000 0.2360 0.1916 0.2447 0.2962 nan 0.2865 0.0 0.3437 0.0386 0.5549 0.0 0.2515 0.0 0.3230 0.0369 0.5379

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.3.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
1
Safetensors
Model size
47.2M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Thibaut/route_background_semantic

Finetuned
(4)
this model