Thibaut commited on
Commit
3e6ecca
·
verified ·
1 Parent(s): 4c43e1c

Model save

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: nvidia/segformer-b3-finetuned-cityscapes-1024-1024
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: route_background_semantic
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # route_background_semantic
16
+
17
+ This model is a fine-tuned version of [nvidia/segformer-b3-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b3-finetuned-cityscapes-1024-1024) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2360
20
+ - Mean Iou: 0.1916
21
+ - Mean Accuracy: 0.2447
22
+ - Overall Accuracy: 0.2962
23
+ - Accuracy Unlabeled: nan
24
+ - Accuracy Découpe: 0.2865
25
+ - Accuracy Reflet météo: 0.0
26
+ - Accuracy Autre réparation: 0.3437
27
+ - Accuracy Glaçage ou ressuage: 0.0386
28
+ - Accuracy Emergence: 0.5549
29
+ - Iou Unlabeled: 0.0
30
+ - Iou Découpe: 0.2515
31
+ - Iou Reflet météo: 0.0
32
+ - Iou Autre réparation: 0.3230
33
+ - Iou Glaçage ou ressuage: 0.0369
34
+ - Iou Emergence: 0.5379
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 6e-05
54
+ - train_batch_size: 4
55
+ - eval_batch_size: 4
56
+ - seed: 1337
57
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
58
+ - lr_scheduler_type: polynomial
59
+ - training_steps: 10000
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Découpe | Accuracy Reflet météo | Accuracy Autre réparation | Accuracy Glaçage ou ressuage | Accuracy Emergence | Iou Unlabeled | Iou Découpe | Iou Reflet météo | Iou Autre réparation | Iou Glaçage ou ressuage | Iou Emergence |
64
+ |:-------------:|:------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:---------------------:|:-------------------------:|:----------------------------:|:------------------:|:-------------:|:-----------:|:----------------:|:--------------------:|:-----------------------:|:-------------:|
65
+ | 0.2715 | 1.0 | 2427 | 0.2682 | 0.0521 | 0.0669 | 0.1828 | nan | 0.0813 | 0.0 | 0.2533 | 0.0 | 0.0 | 0.0 | 0.0766 | 0.0 | 0.2362 | 0.0 | 0.0 |
66
+ | 0.2815 | 2.0 | 4854 | 0.2682 | 0.1165 | 0.1436 | 0.1593 | nan | 0.1108 | 0.0 | 0.1982 | 0.0 | 0.4090 | 0.0 | 0.1014 | 0.0 | 0.1916 | 0.0 | 0.4057 |
67
+ | 0.2638 | 3.0 | 7281 | 0.2420 | 0.1664 | 0.2100 | 0.2564 | nan | 0.2346 | 0.0 | 0.3039 | 0.0030 | 0.5085 | 0.0 | 0.2128 | 0.0 | 0.2854 | 0.0030 | 0.4973 |
68
+ | 0.2703 | 4.0 | 9708 | 0.2333 | 0.1941 | 0.2475 | 0.3074 | nan | 0.2843 | 0.0 | 0.3612 | 0.0446 | 0.5473 | 0.0 | 0.2512 | 0.0 | 0.3383 | 0.0429 | 0.5320 |
69
+ | 0.2197 | 4.1203 | 10000 | 0.2360 | 0.1916 | 0.2447 | 0.2962 | nan | 0.2865 | 0.0 | 0.3437 | 0.0386 | 0.5549 | 0.0 | 0.2515 | 0.0 | 0.3230 | 0.0369 | 0.5379 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.46.1
75
+ - Pytorch 2.3.0
76
+ - Datasets 3.1.0
77
+ - Tokenizers 0.20.3