segformer-b0-segments-sidewalk-finetuned

This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2387
  • Mean Iou: 0.8160
  • Mean Accuracy: 0.8955
  • Overall Accuracy: 0.9070
  • Accuracy Background: 0.9351
  • Accuracy Target: 0.8559
  • Iou Background: 0.8665
  • Iou Target: 0.7655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Target Iou Background Iou Target
0.2223 1.0 51 0.2299 0.8346 0.9082 0.9123 0.9335 0.8830 0.8608 0.8085
0.1991 2.0 102 0.2313 0.8371 0.9103 0.9136 0.9307 0.8900 0.8622 0.8120
0.1905 3.0 153 0.2269 0.8398 0.9112 0.9153 0.9368 0.8856 0.8653 0.8143
0.2218 4.0 204 0.2287 0.8407 0.9119 0.9158 0.9361 0.8877 0.8659 0.8155
0.2145 5.0 255 0.2275 0.8397 0.9125 0.9150 0.9279 0.8971 0.8637 0.8156
0.1905 6.0 306 0.2301 0.8395 0.9108 0.9152 0.9383 0.8832 0.8654 0.8137
0.2056 7.0 357 0.2278 0.8413 0.9116 0.9163 0.9410 0.8821 0.8672 0.8155

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
6
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Tianmu28/segformer-b0-segments-floods

Finetuned
(46)
this model