multibert1010_lrate7.5b32

This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5515
  • Precisions: 0.8551
  • Recall: 0.8069
  • F-measure: 0.8283
  • Accuracy: 0.9171

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.6054 1.0 118 0.4021 0.8661 0.6558 0.6767 0.8698
0.316 2.0 236 0.4039 0.8167 0.6935 0.7317 0.8800
0.1896 3.0 354 0.3480 0.8183 0.7792 0.7780 0.9003
0.1318 4.0 472 0.3930 0.8529 0.7703 0.7983 0.8965
0.0846 5.0 590 0.4027 0.8348 0.8010 0.8141 0.9047
0.0652 6.0 708 0.4824 0.8298 0.7555 0.7855 0.9002
0.0398 7.0 826 0.5446 0.8697 0.7766 0.8110 0.9017
0.0335 8.0 944 0.4761 0.8402 0.8013 0.8192 0.9054
0.0228 9.0 1062 0.5232 0.8547 0.7921 0.8156 0.9085
0.0181 10.0 1180 0.5477 0.8560 0.7968 0.8226 0.9133
0.0106 11.0 1298 0.5207 0.8370 0.8050 0.8199 0.9142
0.0075 12.0 1416 0.5381 0.8469 0.8025 0.8229 0.9156
0.0038 13.0 1534 0.5573 0.8538 0.8061 0.8269 0.9165
0.0047 14.0 1652 0.5515 0.8551 0.8069 0.8283 0.9171

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
107
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Tommert25/multibert1010_lrate7.5b32

Finetuned
(1725)
this model