50d_seg_model_20250507

This model is a fine-tuned version of nvidia/mit-b0 on the TommyClas/50d_seg_20250505 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8496
  • Mean Iou: 0.4618
  • Mean Accuracy: 0.6974
  • Overall Accuracy: 0.7722
  • Accuracy 背景: nan
  • Accuracy 孔隙: 0.7921
  • Accuracy Ld c-s-h: 0.7918
  • Accuracy Hd c-s-h: 0.3186
  • Accuracy 未水化水泥颗粒: 0.8868
  • Iou 背景: 0.0
  • Iou 孔隙: 0.6924
  • Iou Ld c-s-h: 0.5935
  • Iou Hd c-s-h: 0.2372
  • Iou 未水化水泥颗粒: 0.7862

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.01
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: polynomial
  • training_steps: 10000

Training results

Training Loss Epoch Step Accuracy Hd c-s-h Accuracy Ld c-s-h Accuracy 孔隙 Accuracy 未水化水泥颗粒 Accuracy 背景 Iou Hd c-s-h Iou Ld c-s-h Iou 孔隙 Iou 未水化水泥颗粒 Iou 背景 Validation Loss Mean Accuracy Mean Iou Overall Accuracy
1.0019 1.0 250 0.0 0.0650 0.7441 0.4815 nan 0.0 0.0544 0.3893 0.4701 0.0 4.4151 0.3226 0.1828 0.3786
0.4554 2.0 500 0.0000 0.6842 0.7487 0.8724 nan 0.0000 0.5197 0.5813 0.7626 0.0 1.2340 0.5763 0.3727 0.6884
0.4529 3.0 750 0.0000 0.7384 0.7863 0.8553 nan 0.0000 0.5339 0.6291 0.7592 0.0 0.9681 0.5950 0.3844 0.7172
0.4248 4.0 1000 0.2327 0.5245 0.8565 0.8152 nan 0.1599 0.4278 0.5931 0.7471 0.0 1.0964 0.6072 0.3856 0.6744
0.4194 5.0 1250 0.2258 0.7465 0.4263 0.9194 nan 0.1022 0.4743 0.4199 0.7475 0.0 0.9903 0.5795 0.3488 0.6308
0.4183 6.0 1500 0.5113 0.4379 0.9017 0.7679 nan 0.1996 0.3818 0.6551 0.7309 0.0 0.9263 0.6547 0.3935 0.6717
0.4178 7.0 1750 0.2577 0.5691 0.9078 0.8036 nan 0.1468 0.4584 0.6702 0.7487 0.0 0.8280 0.6346 0.4048 0.7077
0.4144 8.0 2000 0.1812 0.6915 0.6035 0.9596 nan 0.1060 0.4844 0.5706 0.6832 0.0 0.9423 0.6090 0.3688 0.6757
0.4148 9.0 2250 0.3482 0.1554 0.9229 0.5755 nan 0.1635 0.1371 0.4818 0.5680 0.0 1.7458 0.5005 0.2701 0.5215
0.4051 10.0 2500 0.0512 0.7194 0.8609 0.7365 nan 0.0456 0.5033 0.6617 0.6965 0.0 0.8936 0.5920 0.3814 0.7146
0.4027 11.0 2750 0.1803 0.5811 0.9251 0.8497 nan 0.1368 0.4711 0.6614 0.7522 0.0 0.8490 0.6340 0.4043 0.7212
0.4 12.0 3000 0.0871 0.7090 0.8824 0.8546 nan 0.0746 0.5374 0.6926 0.7589 0.0 0.7884 0.6333 0.4127 0.7463
0.3966 13.0 3250 0.3821 0.7329 0.8081 0.7223 nan 0.2117 0.5417 0.6819 0.6861 0.0 0.7998 0.6614 0.4243 0.7265
0.3809 14.0 3500 0.1311 0.6534 0.9270 0.8173 nan 0.1055 0.5109 0.6812 0.7604 0.0 0.8045 0.6322 0.4116 0.7370
0.3769 15.0 3750 0.2447 0.7358 0.3770 0.9680 nan 0.1478 0.4557 0.3679 0.6794 0.0 1.0931 0.5814 0.3301 0.6222
0.3742 16.0 4000 0.0718 0.6090 0.9529 0.8171 nan 0.0647 0.4802 0.6614 0.7576 0.0 0.8481 0.6127 0.3928 0.7246
0.3723 17.0 4250 0.1708 0.7345 0.8772 0.8962 nan 0.1393 0.5764 0.7142 0.7782 0.0 0.6791 0.6697 0.4416 0.7698
0.369 18.0 4500 0.0727 0.7378 0.9273 0.7286 nan 0.0679 0.5349 0.7077 0.7059 0.0 0.7373 0.6166 0.4033 0.7440
0.3812 19.0 4750 0.1705 0.8129 0.8411 0.8514 nan 0.1543 0.5980 0.7109 0.7786 0.0 0.6597 0.6690 0.4484 0.7764
0.3686 20.0 5000 0.1371 0.7812 0.8773 0.8351 nan 0.1248 0.5836 0.7143 0.7709 0.0 0.7417 0.6577 0.4387 0.7709
0.3675 21.0 5250 0.2222 0.7268 0.9023 0.8715 nan 0.1882 0.5762 0.7135 0.7853 0.0 0.7173 0.6807 0.4526 0.7746
0.3647 22.0 5500 0.2299 0.7688 0.8603 0.8955 nan 0.1904 0.5974 0.7207 0.7851 0.0 0.7049 0.6886 0.4587 0.7813
0.3629 23.0 5750 0.2192 0.6911 0.9342 0.8092 nan 0.1833 0.5437 0.7023 0.7632 0.0 0.8170 0.6634 0.4385 0.7589
0.3623 24.0 6000 0.2782 0.7554 0.8817 0.8655 nan 0.2243 0.5923 0.7212 0.7869 0.0 0.7217 0.6952 0.4649 0.7814
0.3609 25.0 6250 0.2384 0.7263 0.9150 0.8090 nan 0.1964 0.5627 0.7133 0.7635 0.0 0.8099 0.6722 0.4472 0.7667
0.3619 26.0 6500 0.2477 0.8017 0.8433 0.8570 nan 0.2032 0.6010 0.7189 0.7839 0.0 0.7394 0.6874 0.4614 0.7808
0.3603 27.0 6750 0.2353 0.8035 0.8323 0.8729 nan 0.1923 0.6014 0.7161 0.7879 0.0 0.7378 0.6860 0.4595 0.7801
0.3591 28.0 7000 0.2726 0.7587 0.8749 0.8612 nan 0.2141 0.5885 0.7218 0.7867 0.0 0.7468 0.6918 0.4622 0.7789
0.3584 29.0 7250 0.7495 0.4603 0.6958 0.7760 nan 0.7940 0.7926 0.2814 0.9150 0.0 0.7036 0.5987 0.2133 0.7861
0.3564 30.0 7500 0.7896 0.4520 0.6803 0.7733 nan 0.7788 0.8223 0.2201 0.9001 0.0 0.6955 0.6001 0.1781 0.7865
0.3567 31.0 7750 0.7667 0.4590 0.6863 0.7810 nan 0.8533 0.7825 0.2269 0.8827 0.0 0.7195 0.5977 0.1887 0.7891
0.3551 32.0 8000 0.7786 0.4616 0.6945 0.7776 nan 0.7922 0.8068 0.2755 0.9036 0.0 0.7005 0.6029 0.2179 0.7866
0.3539 33.0 8250 0.7576 0.4644 0.6960 0.7801 nan 0.8306 0.7869 0.2804 0.8862 0.0 0.7122 0.5988 0.2222 0.7889
0.354 34.0 8500 0.7926 0.4632 0.6966 0.7774 nan 0.7967 0.8027 0.2899 0.8969 0.0 0.7016 0.6007 0.2255 0.7881
0.3519 35.0 8750 0.7779 0.4626 0.6919 0.7771 nan 0.8519 0.7782 0.2869 0.8505 0.0 0.7137 0.5914 0.2252 0.7825
0.3511 36.0 9000 0.8104 0.4638 0.6987 0.7753 nan 0.7967 0.7967 0.3138 0.8878 0.0 0.6982 0.5980 0.2358 0.7873
0.3505 37.0 9250 0.8228 0.4613 0.6954 0.7735 nan 0.7830 0.8048 0.3016 0.8922 0.0 0.6916 0.5975 0.2307 0.7868
0.3499 38.0 9500 0.8103 0.4617 0.6939 0.7752 nan 0.8289 0.7767 0.2915 0.8786 0.0 0.7023 0.5905 0.2290 0.7869
0.3493 39.0 9750 0.8413 0.4616 0.6951 0.7733 nan 0.8075 0.7885 0.3065 0.8778 0.0 0.6970 0.5925 0.2325 0.7863
0.3481 40.0 10000 0.8496 0.4618 0.6974 0.7722 nan 0.7921 0.7918 0.3186 0.8868 0.0 0.6924 0.5935 0.2372 0.7862

Framework versions

  • Transformers 4.52.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
18
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for TommyClas/50d_seg_model_20250507

Base model

nvidia/mit-b0
Finetuned
(445)
this model