Wav2Vec-Urdu-Test4 / README.md
ToobaRamzan's picture
End of training
48bcdaf verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: Wav2Vec-Urdu-Test4
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ur
          split: test
          args: ur
        metrics:
          - name: Wer
            type: wer
            value: 99.17818453492715

Wav2Vec-Urdu-Test4

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0093
  • Wer: 99.1782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.0 19 18.2298 105.9395
19.0476 2.0 38 5.0072 100.0374
6.1409 3.0 57 1.9519 98.3190
1.5743 4.0 76 1.0208 98.5805
1.5743 5.0 95 0.8330 99.3650
1.0023 6.0 114 0.7071 98.3937
0.8148 7.0 133 0.7718 95.5174
0.7533 8.0 152 0.6405 93.5002
0.7533 9.0 171 1.5573 95.2559
0.7768 9.48 180 1.0093 99.1782

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1